Update README.md
Browse files
README.md
CHANGED
@@ -75,6 +75,31 @@ Clinical Mosaic was pre-trained on deidentified clinical notes from MIMIC-IV-NOT
|
|
75 |
|
76 |
Install the Hugging Face Transformers library and load the model as follows:
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
```python
|
79 |
from transformers import AutoModelForSequenceClassification, BertTokenizer, BertConfig
|
80 |
|
|
|
75 |
|
76 |
Install the Hugging Face Transformers library and load the model as follows:
|
77 |
|
78 |
+
### For embeddings generation:
|
79 |
+
|
80 |
+
```python
|
81 |
+
from transformers import AutoModel, BertTokenizer, BertConfig
|
82 |
+
|
83 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # MosaicBERT uses the standard BERT tokenizer
|
84 |
+
config = BertConfig.from_pretrained('Sifal/ClinicalMosaic') # the config needs to be passed in
|
85 |
+
|
86 |
+
ClincalMosaic = AutoModel.from_pretrained(
|
87 |
+
'Sifal/ClinicalMosaic',
|
88 |
+
config=config,
|
89 |
+
torch_dtype='auto',
|
90 |
+
trust_remote_code=True,
|
91 |
+
device_map="auto"
|
92 |
+
)
|
93 |
+
|
94 |
+
# Example usage
|
95 |
+
clinical_text = "..."
|
96 |
+
|
97 |
+
inputs = tokenizer(clinical_text, return_tensors="pt")
|
98 |
+
last_layer_embeddings = ClincalMosaic(**inputs, output_all_encoded_layers=False)
|
99 |
+
```
|
100 |
+
|
101 |
+
### For sequence classification:
|
102 |
+
|
103 |
```python
|
104 |
from transformers import AutoModelForSequenceClassification, BertTokenizer, BertConfig
|
105 |
|