--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: dinov2-base_rice-leaf-disease-augmented-v4_tl results: [] --- # dinov2-base_rice-leaf-disease-augmented-v4_tl This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2961 - Accuracy: 0.9060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 256 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 2.1181 | 0.5 | 64 | 0.3658 | 1.7085 | | 1.3815 | 1.0 | 128 | 0.7047 | 1.0554 | | 0.8981 | 1.5 | 192 | 0.7785 | 0.7380 | | 0.6515 | 2.0 | 256 | 0.7987 | 0.5983 | | 0.5233 | 2.5 | 320 | 0.8255 | 0.5212 | | 0.4535 | 3.0 | 384 | 0.8356 | 0.4803 | | 0.3959 | 3.5 | 448 | 0.8557 | 0.4428 | | 0.3614 | 4.0 | 512 | 0.8725 | 0.4040 | | 0.3391 | 4.5 | 576 | 0.8691 | 0.4082 | | 0.318 | 5.0 | 640 | 0.3749 | 0.8859 | | 0.3134 | 5.5 | 704 | 0.3922 | 0.8758 | | 0.3025 | 6.0 | 768 | 0.3802 | 0.8826 | | 0.3098 | 6.5 | 832 | 0.3856 | 0.8725 | | 0.2986 | 7.0 | 896 | 0.3666 | 0.8859 | | 0.2856 | 7.5 | 960 | 0.3525 | 0.8826 | | 0.2549 | 8.0 | 1024 | 0.3327 | 0.8725 | | 0.24 | 8.5 | 1088 | 0.3428 | 0.9027 | | 0.2422 | 9.0 | 1152 | 0.3304 | 0.8993 | | 0.2178 | 9.5 | 1216 | 0.3238 | 0.9027 | | 0.2297 | 10.0 | 1280 | 0.3273 | 0.9027 | | 0.2176 | 10.5 | 1344 | 0.3285 | 0.9027 | | 0.2236 | 11.0 | 1408 | 0.3411 | 0.8792 | | 0.2198 | 11.5 | 1472 | 0.3342 | 0.8893 | | 0.2056 | 12.0 | 1536 | 0.3108 | 0.9060 | | 0.1915 | 12.5 | 1600 | 0.2995 | 0.8993 | | 0.1911 | 13.0 | 1664 | 0.3058 | 0.9027 | | 0.1787 | 13.5 | 1728 | 0.2928 | 0.9128 | | 0.1776 | 14.0 | 1792 | 0.2979 | 0.9060 | | 0.1724 | 14.5 | 1856 | 0.2966 | 0.9060 | | 0.168 | 15.0 | 1920 | 0.2961 | 0.9060 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0