--- library_name: transformers license: other base_model: apple/mobilevit-small tags: - generated_from_trainer metrics: - accuracy model-index: - name: mobilevit-small_rice-leaf-disease-augmented-v4_v5_fft results: [] --- # mobilevit-small_rice-leaf-disease-augmented-v4_v5_fft This model is a fine-tuned version of [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3882 - Accuracy: 0.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 256 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 2.0678 | 0.5 | 64 | 2.0341 | 0.2617 | | 1.9896 | 1.0 | 128 | 1.8927 | 0.5067 | | 1.768 | 1.5 | 192 | 1.5508 | 0.5336 | | 1.3736 | 2.0 | 256 | 1.0992 | 0.6779 | | 0.9732 | 2.5 | 320 | 0.7521 | 0.7685 | | 0.7316 | 3.0 | 384 | 0.6023 | 0.8121 | | 0.5769 | 3.5 | 448 | 0.5281 | 0.8121 | | 0.5013 | 4.0 | 512 | 0.4605 | 0.8423 | | 0.4329 | 4.5 | 576 | 0.4268 | 0.8691 | | 0.3821 | 5.0 | 640 | 0.3944 | 0.8859 | | 0.3602 | 5.5 | 704 | 0.3895 | 0.8859 | | 0.3496 | 6.0 | 768 | 0.3827 | 0.8893 | | 0.3507 | 6.5 | 832 | 0.3723 | 0.8859 | | 0.3225 | 7.0 | 896 | 0.3741 | 0.8893 | | 0.2924 | 7.5 | 960 | 0.3271 | 0.9027 | | 0.2298 | 8.0 | 1024 | 0.3185 | 0.8993 | | 0.1888 | 8.5 | 1088 | 0.3093 | 0.9094 | | 0.1771 | 9.0 | 1152 | 0.2994 | 0.9094 | | 0.1461 | 9.5 | 1216 | 0.2907 | 0.9128 | | 0.1496 | 10.0 | 1280 | 0.3046 | 0.9027 | | 0.1284 | 10.5 | 1344 | 0.2999 | 0.9027 | | 0.1323 | 11.0 | 1408 | 0.2904 | 0.9060 | | 0.1291 | 11.5 | 1472 | 0.2939 | 0.9128 | | 0.1227 | 12.0 | 1536 | 0.2869 | 0.9027 | | 0.1033 | 12.5 | 1600 | 0.2886 | 0.9128 | | 0.0856 | 13.0 | 1664 | 0.3137 | 0.9195 | | 0.077 | 13.5 | 1728 | 0.3066 | 0.9161 | | 0.0672 | 14.0 | 1792 | 0.3010 | 0.9094 | | 0.0601 | 14.5 | 1856 | 0.3260 | 0.9128 | | 0.0469 | 15.0 | 1920 | 0.2773 | 0.9161 | | 0.0501 | 15.5 | 1984 | 0.2908 | 0.9161 | | 0.0518 | 16.0 | 2048 | 0.3022 | 0.9128 | | 0.0515 | 16.5 | 2112 | 0.3325 | 0.9228 | | 0.0537 | 17.0 | 2176 | 0.3087 | 0.9195 | | 0.0462 | 17.5 | 2240 | 0.2908 | 0.9295 | | 0.0406 | 18.0 | 2304 | 0.3139 | 0.9262 | | 0.0283 | 18.5 | 2368 | 0.3038 | 0.9329 | | 0.0196 | 19.0 | 2432 | 0.2968 | 0.9329 | | 0.0207 | 19.5 | 2496 | 0.3090 | 0.9295 | | 0.0248 | 20.0 | 2560 | 0.3097 | 0.9262 | | 0.0223 | 20.5 | 2624 | 0.2872 | 0.9262 | | 0.0205 | 21.0 | 2688 | 0.3517 | 0.9262 | | 0.0192 | 21.5 | 2752 | 0.3580 | 0.9295 | | 0.0238 | 22.0 | 2816 | 0.3922 | 0.9262 | | 0.0173 | 22.5 | 2880 | 0.3709 | 0.9228 | | 0.019 | 23.0 | 2944 | 0.3679 | 0.9295 | | 0.0132 | 23.5 | 3008 | 0.3949 | 0.9295 | | 0.0112 | 24.0 | 3072 | 0.3609 | 0.9329 | | 0.0122 | 24.5 | 3136 | 0.3732 | 0.9262 | | 0.0107 | 25.0 | 3200 | 0.3667 | 0.9295 | | 0.0116 | 25.5 | 3264 | 0.3775 | 0.9262 | | 0.0111 | 26.0 | 3328 | 0.3289 | 0.9262 | | 0.0151 | 26.5 | 3392 | 0.3770 | 0.9228 | | 0.0139 | 27.0 | 3456 | 0.3755 | 0.9228 | | 0.0117 | 27.5 | 3520 | 0.4131 | 0.9195 | | 0.0086 | 28.0 | 3584 | 0.3856 | 0.9262 | | 0.0101 | 28.5 | 3648 | 0.3674 | 0.9362 | | 0.0097 | 29.0 | 3712 | 0.3762 | 0.9396 | | 0.0086 | 29.5 | 3776 | 0.4119 | 0.9295 | | 0.0091 | 30.0 | 3840 | 0.3882 | 0.9362 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.1