---
language:
- en
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:798036
- loss:Distillation
base_model: microsoft/Multilingual-MiniLM-L12-H384
datasets:
- Speedsy/ms-marco-tr-bge
pipeline_tag: sentence-similarity
library_name: PyLate
---
# PyLate model based on microsoft/Multilingual-MiniLM-L12-H384
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
## Model Details
### Model Description
- **Model Type:** PyLate model
- **Base model:** [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384)
- **Document Length:** 180 tokens
- **Query Length:** 32 tokens
- **Output Dimensionality:** 128 tokens
- **Similarity Function:** MaxSim
- **Training Dataset:**
- [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge)
- **Language:** en
### Model Sources
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
### Full Model Architecture
```
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel
(1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Usage
First install the PyLate library:
```bash
pip install -U pylate
```
### Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
#### Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
```python
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
```
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
```
#### Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
```
### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
```python
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
## Training Details
### Training Dataset
#### train
* Dataset: [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) at [b9b0f7f](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge/tree/b9b0f7fd13c3ce3b632a3a1cd37f6ddbf8a040f5)
* Size: 798,036 training samples
* Columns: query_id
, document_ids
, and scores
* Approximate statistics based on the first 1000 samples:
| | query_id | document_ids | scores |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
| type | string | list | list |
| details |
- min: 4 tokens
- mean: 5.82 tokens
- max: 6 tokens
| | |
* Samples:
| query_id | document_ids | scores |
|:---------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|
| 817836
| ['2716076', '6741935', '2681109', '5562684', '3507339', ...]
| [1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]
|
| 1045170
| ['5088671', '2953295', '8783471', '4268439', '6339935', ...]
| [1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]
|
| 1154488
| ['6498614', '3770829', '1060712', '2590533', '7672044', ...]
| [0.9497447609901428, 0.6662212610244751, 0.7423420548439026, 1.0, 0.6580896973609924, ...]
|
* Loss: pylate.losses.distillation.Distillation
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `learning_rate`: 3e-05
- `num_train_epochs`: 1
- `fp16`: True
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0100 | 500 | 0.0305 |
| 0.0200 | 1000 | 0.027 |
| 0.0301 | 1500 | 0.026 |
| 0.0401 | 2000 | 0.0253 |
| 0.0501 | 2500 | 0.0249 |
| 0.0601 | 3000 | 0.0239 |
| 0.0702 | 3500 | 0.0239 |
| 0.0802 | 4000 | 0.0236 |
| 0.0902 | 4500 | 0.0236 |
| 0.1002 | 5000 | 0.0232 |
| 0.1103 | 5500 | 0.0229 |
| 0.1203 | 6000 | 0.0228 |
| 0.1303 | 6500 | 0.0226 |
| 0.1403 | 7000 | 0.0226 |
| 0.1504 | 7500 | 0.0222 |
| 0.1604 | 8000 | 0.0223 |
| 0.1704 | 8500 | 0.0218 |
| 0.1804 | 9000 | 0.0219 |
| 0.1905 | 9500 | 0.0221 |
| 0.2005 | 10000 | 0.0219 |
| 0.2105 | 10500 | 0.0216 |
| 0.2205 | 11000 | 0.0211 |
| 0.2306 | 11500 | 0.0214 |
| 0.2406 | 12000 | 0.0211 |
| 0.2506 | 12500 | 0.0214 |
| 0.2606 | 13000 | 0.0212 |
| 0.2707 | 13500 | 0.0209 |
| 0.2807 | 14000 | 0.0206 |
| 0.2907 | 14500 | 0.0208 |
| 0.3007 | 15000 | 0.0204 |
| 0.3108 | 15500 | 0.0207 |
| 0.3208 | 16000 | 0.0204 |
| 0.3308 | 16500 | 0.0204 |
| 0.3408 | 17000 | 0.0204 |
| 0.3509 | 17500 | 0.0203 |
| 0.3609 | 18000 | 0.0199 |
| 0.3709 | 18500 | 0.02 |
| 0.3809 | 19000 | 0.0199 |
| 0.3910 | 19500 | 0.0197 |
| 0.4010 | 20000 | 0.0197 |
| 0.4110 | 20500 | 0.0199 |
| 0.4210 | 21000 | 0.0198 |
| 0.4311 | 21500 | 0.0196 |
| 0.4411 | 22000 | 0.02 |
| 0.4511 | 22500 | 0.0196 |
| 0.4611 | 23000 | 0.0196 |
| 0.4711 | 23500 | 0.0192 |
| 0.4812 | 24000 | 0.0195 |
| 0.4912 | 24500 | 0.0197 |
| 0.5012 | 25000 | 0.0194 |
| 0.5112 | 25500 | 0.0191 |
| 0.5213 | 26000 | 0.019 |
| 0.5313 | 26500 | 0.019 |
| 0.5413 | 27000 | 0.0192 |
| 0.5513 | 27500 | 0.0193 |
| 0.5614 | 28000 | 0.0189 |
| 0.5714 | 28500 | 0.019 |
| 0.5814 | 29000 | 0.0189 |
| 0.5914 | 29500 | 0.0189 |
| 0.6015 | 30000 | 0.0189 |
| 0.6115 | 30500 | 0.0187 |
| 0.6215 | 31000 | 0.0187 |
| 0.6315 | 31500 | 0.0186 |
| 0.6416 | 32000 | 0.0187 |
| 0.6516 | 32500 | 0.0187 |
| 0.6616 | 33000 | 0.0186 |
| 0.6716 | 33500 | 0.0185 |
| 0.6817 | 34000 | 0.0188 |
| 0.6917 | 34500 | 0.0186 |
| 0.7017 | 35000 | 0.0185 |
| 0.7117 | 35500 | 0.0182 |
| 0.7218 | 36000 | 0.0184 |
| 0.7318 | 36500 | 0.0183 |
| 0.7418 | 37000 | 0.0184 |
| 0.7518 | 37500 | 0.0183 |
| 0.7619 | 38000 | 0.0182 |
| 0.7719 | 38500 | 0.0184 |
| 0.7819 | 39000 | 0.0183 |
| 0.7919 | 39500 | 0.0184 |
| 0.8020 | 40000 | 0.0184 |
| 0.8120 | 40500 | 0.0182 |
| 0.8220 | 41000 | 0.0182 |
| 0.8320 | 41500 | 0.0182 |
| 0.8421 | 42000 | 0.0183 |
| 0.8521 | 42500 | 0.0183 |
| 0.8621 | 43000 | 0.0179 |
| 0.8721 | 43500 | 0.0178 |
| 0.8822 | 44000 | 0.0178 |
| 0.8922 | 44500 | 0.018 |
| 0.9022 | 45000 | 0.0181 |
| 0.9122 | 45500 | 0.0178 |
| 0.9223 | 46000 | 0.018 |
| 0.9323 | 46500 | 0.018 |
| 0.9423 | 47000 | 0.0178 |
| 0.9523 | 47500 | 0.0178 |
| 0.9623 | 48000 | 0.0179 |
| 0.9724 | 48500 | 0.018 |
| 0.9824 | 49000 | 0.0181 |
| 0.9924 | 49500 | 0.018 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- PyLate: 1.1.7
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
```
#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaƫl},
url={https://github.com/lightonai/pylate},
year={2024}
}
```