Speedsy commited on
Commit
a0bd009
·
verified ·
1 Parent(s): c129c86

Upload folder using huggingface_hub

Browse files
1_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 128, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
1_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b683de448d178a2dc501e11f916f5d45034bf94635dda1eca704f64f6c06cdd
3
+ size 393304
README.md ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - ColBERT
6
+ - PyLate
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:798036
12
+ - loss:Distillation
13
+ base_model: dbmdz/bert-base-turkish-cased
14
+ datasets:
15
+ - Speedsy/ms-marco-tr-bge
16
+ pipeline_tag: sentence-similarity
17
+ library_name: PyLate
18
+ ---
19
+
20
+ # PyLate model based on dbmdz/bert-base-turkish-cased
21
+
22
+ This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
23
+
24
+ ## Model Details
25
+
26
+ ### Model Description
27
+ - **Model Type:** PyLate model
28
+ - **Base model:** [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) <!-- at revision 5bcc154ffb58544ecd61d808897597c40ef63881 -->
29
+ - **Document Length:** 180 tokens
30
+ - **Query Length:** 32 tokens
31
+ - **Output Dimensionality:** 128 tokens
32
+ - **Similarity Function:** MaxSim
33
+ - **Training Dataset:**
34
+ - [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge)
35
+ - **Language:** en
36
+ <!-- - **License:** Unknown -->
37
+
38
+ ### Model Sources
39
+
40
+ - **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
41
+ - **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
42
+ - **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
43
+
44
+ ### Full Model Architecture
45
+
46
+ ```
47
+ ColBERT(
48
+ (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel
49
+ (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
50
+ )
51
+ ```
52
+
53
+ ## Usage
54
+ First install the PyLate library:
55
+
56
+ ```bash
57
+ pip install -U pylate
58
+ ```
59
+
60
+ ### Retrieval
61
+
62
+ PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
63
+
64
+ #### Indexing documents
65
+
66
+ First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
67
+
68
+ ```python
69
+ from pylate import indexes, models, retrieve
70
+
71
+ # Step 1: Load the ColBERT model
72
+ model = models.ColBERT(
73
+ model_name_or_path=pylate_model_id,
74
+ )
75
+
76
+ # Step 2: Initialize the Voyager index
77
+ index = indexes.Voyager(
78
+ index_folder="pylate-index",
79
+ index_name="index",
80
+ override=True, # This overwrites the existing index if any
81
+ )
82
+
83
+ # Step 3: Encode the documents
84
+ documents_ids = ["1", "2", "3"]
85
+ documents = ["document 1 text", "document 2 text", "document 3 text"]
86
+
87
+ documents_embeddings = model.encode(
88
+ documents,
89
+ batch_size=32,
90
+ is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
91
+ show_progress_bar=True,
92
+ )
93
+
94
+ # Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
95
+ index.add_documents(
96
+ documents_ids=documents_ids,
97
+ documents_embeddings=documents_embeddings,
98
+ )
99
+ ```
100
+
101
+ Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
102
+
103
+ ```python
104
+ # To load an index, simply instantiate it with the correct folder/name and without overriding it
105
+ index = indexes.Voyager(
106
+ index_folder="pylate-index",
107
+ index_name="index",
108
+ )
109
+ ```
110
+
111
+ #### Retrieving top-k documents for queries
112
+
113
+ Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
114
+ To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
115
+
116
+ ```python
117
+ # Step 1: Initialize the ColBERT retriever
118
+ retriever = retrieve.ColBERT(index=index)
119
+
120
+ # Step 2: Encode the queries
121
+ queries_embeddings = model.encode(
122
+ ["query for document 3", "query for document 1"],
123
+ batch_size=32,
124
+ is_query=True, # # Ensure that it is set to False to indicate that these are queries
125
+ show_progress_bar=True,
126
+ )
127
+
128
+ # Step 3: Retrieve top-k documents
129
+ scores = retriever.retrieve(
130
+ queries_embeddings=queries_embeddings,
131
+ k=10, # Retrieve the top 10 matches for each query
132
+ )
133
+ ```
134
+
135
+ ### Reranking
136
+ If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
137
+
138
+ ```python
139
+ from pylate import rank, models
140
+
141
+ queries = [
142
+ "query A",
143
+ "query B",
144
+ ]
145
+
146
+ documents = [
147
+ ["document A", "document B"],
148
+ ["document 1", "document C", "document B"],
149
+ ]
150
+
151
+ documents_ids = [
152
+ [1, 2],
153
+ [1, 3, 2],
154
+ ]
155
+
156
+ model = models.ColBERT(
157
+ model_name_or_path=pylate_model_id,
158
+ )
159
+
160
+ queries_embeddings = model.encode(
161
+ queries,
162
+ is_query=True,
163
+ )
164
+
165
+ documents_embeddings = model.encode(
166
+ documents,
167
+ is_query=False,
168
+ )
169
+
170
+ reranked_documents = rank.rerank(
171
+ documents_ids=documents_ids,
172
+ queries_embeddings=queries_embeddings,
173
+ documents_embeddings=documents_embeddings,
174
+ )
175
+ ```
176
+
177
+ <!--
178
+ ### Direct Usage (Transformers)
179
+
180
+ <details><summary>Click to see the direct usage in Transformers</summary>
181
+
182
+ </details>
183
+ -->
184
+
185
+ <!--
186
+ ### Downstream Usage (Sentence Transformers)
187
+
188
+ You can finetune this model on your own dataset.
189
+
190
+ <details><summary>Click to expand</summary>
191
+
192
+ </details>
193
+ -->
194
+
195
+ <!--
196
+ ### Out-of-Scope Use
197
+
198
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
199
+ -->
200
+
201
+ <!--
202
+ ## Bias, Risks and Limitations
203
+
204
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
205
+ -->
206
+
207
+ <!--
208
+ ### Recommendations
209
+
210
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
211
+ -->
212
+
213
+ ## Training Details
214
+
215
+ ### Training Dataset
216
+
217
+ #### train
218
+
219
+ * Dataset: [train](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge) at [b9b0f7f](https://huggingface.co/datasets/Speedsy/ms-marco-tr-bge/tree/b9b0f7fd13c3ce3b632a3a1cd37f6ddbf8a040f5)
220
+ * Size: 798,036 training samples
221
+ * Columns: <code>query_id</code>, <code>document_ids</code>, and <code>scores</code>
222
+ * Approximate statistics based on the first 1000 samples:
223
+ | | query_id | document_ids | scores |
224
+ |:--------|:--------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
225
+ | type | string | list | list |
226
+ | details | <ul><li>min: 4 tokens</li><li>mean: 6.23 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>size: 32 elements</li></ul> | <ul><li>size: 32 elements</li></ul> |
227
+ * Samples:
228
+ | query_id | document_ids | scores |
229
+ |:---------------------|:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|
230
+ | <code>817836</code> | <code>['2716076', '6741935', '2681109', '5562684', '3507339', ...]</code> | <code>[1.0, 0.7059561610221863, 0.21702419221401215, 0.38270196318626404, 0.20812414586544037, ...]</code> |
231
+ | <code>1045170</code> | <code>['5088671', '2953295', '8783471', '4268439', '6339935', ...]</code> | <code>[1.0, 0.6493034362792969, 0.0692221149802208, 0.17963139712810516, 0.6697239875793457, ...]</code> |
232
+ | <code>1154488</code> | <code>['6498614', '3770829', '1060712', '2590533', '7672044', ...]</code> | <code>[0.9497447609901428, 0.6662212610244751, 0.7423420548439026, 1.0, 0.6580896973609924, ...]</code> |
233
+ * Loss: <code>pylate.losses.distillation.Distillation</code>
234
+
235
+ ### Training Hyperparameters
236
+ #### Non-Default Hyperparameters
237
+
238
+ - `per_device_train_batch_size`: 16
239
+ - `learning_rate`: 3e-05
240
+ - `num_train_epochs`: 1
241
+ - `bf16`: True
242
+
243
+ #### All Hyperparameters
244
+ <details><summary>Click to expand</summary>
245
+
246
+ - `overwrite_output_dir`: False
247
+ - `do_predict`: False
248
+ - `eval_strategy`: no
249
+ - `prediction_loss_only`: True
250
+ - `per_device_train_batch_size`: 16
251
+ - `per_device_eval_batch_size`: 8
252
+ - `per_gpu_train_batch_size`: None
253
+ - `per_gpu_eval_batch_size`: None
254
+ - `gradient_accumulation_steps`: 1
255
+ - `eval_accumulation_steps`: None
256
+ - `torch_empty_cache_steps`: None
257
+ - `learning_rate`: 3e-05
258
+ - `weight_decay`: 0.0
259
+ - `adam_beta1`: 0.9
260
+ - `adam_beta2`: 0.999
261
+ - `adam_epsilon`: 1e-08
262
+ - `max_grad_norm`: 1.0
263
+ - `num_train_epochs`: 1
264
+ - `max_steps`: -1
265
+ - `lr_scheduler_type`: linear
266
+ - `lr_scheduler_kwargs`: {}
267
+ - `warmup_ratio`: 0.0
268
+ - `warmup_steps`: 0
269
+ - `log_level`: passive
270
+ - `log_level_replica`: warning
271
+ - `log_on_each_node`: True
272
+ - `logging_nan_inf_filter`: True
273
+ - `save_safetensors`: True
274
+ - `save_on_each_node`: False
275
+ - `save_only_model`: False
276
+ - `restore_callback_states_from_checkpoint`: False
277
+ - `no_cuda`: False
278
+ - `use_cpu`: False
279
+ - `use_mps_device`: False
280
+ - `seed`: 42
281
+ - `data_seed`: None
282
+ - `jit_mode_eval`: False
283
+ - `use_ipex`: False
284
+ - `bf16`: True
285
+ - `fp16`: False
286
+ - `fp16_opt_level`: O1
287
+ - `half_precision_backend`: auto
288
+ - `bf16_full_eval`: False
289
+ - `fp16_full_eval`: False
290
+ - `tf32`: None
291
+ - `local_rank`: 0
292
+ - `ddp_backend`: None
293
+ - `tpu_num_cores`: None
294
+ - `tpu_metrics_debug`: False
295
+ - `debug`: []
296
+ - `dataloader_drop_last`: False
297
+ - `dataloader_num_workers`: 0
298
+ - `dataloader_prefetch_factor`: None
299
+ - `past_index`: -1
300
+ - `disable_tqdm`: False
301
+ - `remove_unused_columns`: True
302
+ - `label_names`: None
303
+ - `load_best_model_at_end`: False
304
+ - `ignore_data_skip`: False
305
+ - `fsdp`: []
306
+ - `fsdp_min_num_params`: 0
307
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
308
+ - `fsdp_transformer_layer_cls_to_wrap`: None
309
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
310
+ - `deepspeed`: None
311
+ - `label_smoothing_factor`: 0.0
312
+ - `optim`: adamw_torch
313
+ - `optim_args`: None
314
+ - `adafactor`: False
315
+ - `group_by_length`: False
316
+ - `length_column_name`: length
317
+ - `ddp_find_unused_parameters`: None
318
+ - `ddp_bucket_cap_mb`: None
319
+ - `ddp_broadcast_buffers`: False
320
+ - `dataloader_pin_memory`: True
321
+ - `dataloader_persistent_workers`: False
322
+ - `skip_memory_metrics`: True
323
+ - `use_legacy_prediction_loop`: False
324
+ - `push_to_hub`: False
325
+ - `resume_from_checkpoint`: None
326
+ - `hub_model_id`: None
327
+ - `hub_strategy`: every_save
328
+ - `hub_private_repo`: None
329
+ - `hub_always_push`: False
330
+ - `gradient_checkpointing`: False
331
+ - `gradient_checkpointing_kwargs`: None
332
+ - `include_inputs_for_metrics`: False
333
+ - `include_for_metrics`: []
334
+ - `eval_do_concat_batches`: True
335
+ - `fp16_backend`: auto
336
+ - `push_to_hub_model_id`: None
337
+ - `push_to_hub_organization`: None
338
+ - `mp_parameters`:
339
+ - `auto_find_batch_size`: False
340
+ - `full_determinism`: False
341
+ - `torchdynamo`: None
342
+ - `ray_scope`: last
343
+ - `ddp_timeout`: 1800
344
+ - `torch_compile`: False
345
+ - `torch_compile_backend`: None
346
+ - `torch_compile_mode`: None
347
+ - `dispatch_batches`: None
348
+ - `split_batches`: None
349
+ - `include_tokens_per_second`: False
350
+ - `include_num_input_tokens_seen`: False
351
+ - `neftune_noise_alpha`: None
352
+ - `optim_target_modules`: None
353
+ - `batch_eval_metrics`: False
354
+ - `eval_on_start`: False
355
+ - `use_liger_kernel`: False
356
+ - `eval_use_gather_object`: False
357
+ - `average_tokens_across_devices`: False
358
+ - `prompts`: None
359
+ - `batch_sampler`: batch_sampler
360
+ - `multi_dataset_batch_sampler`: proportional
361
+
362
+ </details>
363
+
364
+ ### Training Logs
365
+ | Epoch | Step | Training Loss |
366
+ |:------:|:-----:|:-------------:|
367
+ | 0.0100 | 500 | 0.0283 |
368
+ | 0.0200 | 1000 | 0.0244 |
369
+ | 0.0301 | 1500 | 0.0235 |
370
+ | 0.0401 | 2000 | 0.0225 |
371
+ | 0.0501 | 2500 | 0.0221 |
372
+ | 0.0601 | 3000 | 0.021 |
373
+ | 0.0702 | 3500 | 0.0209 |
374
+ | 0.0802 | 4000 | 0.0205 |
375
+ | 0.0902 | 4500 | 0.0203 |
376
+ | 0.1002 | 5000 | 0.02 |
377
+ | 0.1103 | 5500 | 0.0201 |
378
+ | 0.1203 | 6000 | 0.0197 |
379
+ | 0.1303 | 6500 | 0.0195 |
380
+ | 0.1403 | 7000 | 0.0195 |
381
+ | 0.1504 | 7500 | 0.0189 |
382
+ | 0.1604 | 8000 | 0.0189 |
383
+ | 0.1704 | 8500 | 0.0188 |
384
+ | 0.1804 | 9000 | 0.0185 |
385
+ | 0.1905 | 9500 | 0.0186 |
386
+ | 0.2005 | 10000 | 0.0185 |
387
+ | 0.2105 | 10500 | 0.0183 |
388
+ | 0.2205 | 11000 | 0.0178 |
389
+ | 0.2306 | 11500 | 0.018 |
390
+ | 0.2406 | 12000 | 0.0179 |
391
+ | 0.2506 | 12500 | 0.018 |
392
+ | 0.2606 | 13000 | 0.0178 |
393
+ | 0.2707 | 13500 | 0.0176 |
394
+ | 0.2807 | 14000 | 0.0176 |
395
+ | 0.2907 | 14500 | 0.0174 |
396
+ | 0.3007 | 15000 | 0.0171 |
397
+ | 0.3108 | 15500 | 0.0175 |
398
+ | 0.3208 | 16000 | 0.017 |
399
+ | 0.3308 | 16500 | 0.0173 |
400
+ | 0.3408 | 17000 | 0.0171 |
401
+ | 0.3509 | 17500 | 0.017 |
402
+ | 0.3609 | 18000 | 0.0166 |
403
+ | 0.3709 | 18500 | 0.0168 |
404
+ | 0.3809 | 19000 | 0.0166 |
405
+ | 0.3910 | 19500 | 0.0165 |
406
+ | 0.4010 | 20000 | 0.0165 |
407
+ | 0.4110 | 20500 | 0.0168 |
408
+ | 0.4210 | 21000 | 0.0164 |
409
+ | 0.4311 | 21500 | 0.0163 |
410
+ | 0.4411 | 22000 | 0.0166 |
411
+ | 0.4511 | 22500 | 0.0163 |
412
+ | 0.4611 | 23000 | 0.0163 |
413
+ | 0.4711 | 23500 | 0.016 |
414
+ | 0.4812 | 24000 | 0.0163 |
415
+ | 0.4912 | 24500 | 0.0164 |
416
+ | 0.5012 | 25000 | 0.0162 |
417
+ | 0.5112 | 25500 | 0.016 |
418
+ | 0.5213 | 26000 | 0.0158 |
419
+ | 0.5313 | 26500 | 0.0158 |
420
+ | 0.5413 | 27000 | 0.0158 |
421
+ | 0.5513 | 27500 | 0.0161 |
422
+ | 0.5614 | 28000 | 0.0157 |
423
+ | 0.5714 | 28500 | 0.0158 |
424
+ | 0.5814 | 29000 | 0.0157 |
425
+ | 0.5914 | 29500 | 0.0157 |
426
+ | 0.6015 | 30000 | 0.0157 |
427
+ | 0.6115 | 30500 | 0.0154 |
428
+ | 0.6215 | 31000 | 0.0155 |
429
+ | 0.6315 | 31500 | 0.0154 |
430
+ | 0.6416 | 32000 | 0.0155 |
431
+ | 0.6516 | 32500 | 0.0155 |
432
+ | 0.6616 | 33000 | 0.0153 |
433
+ | 0.6716 | 33500 | 0.0153 |
434
+ | 0.6817 | 34000 | 0.0156 |
435
+ | 0.6917 | 34500 | 0.0154 |
436
+ | 0.7017 | 35000 | 0.0154 |
437
+ | 0.7117 | 35500 | 0.0151 |
438
+ | 0.7218 | 36000 | 0.0153 |
439
+ | 0.7318 | 36500 | 0.0151 |
440
+ | 0.7418 | 37000 | 0.0152 |
441
+ | 0.7518 | 37500 | 0.015 |
442
+ | 0.7619 | 38000 | 0.0149 |
443
+ | 0.7719 | 38500 | 0.015 |
444
+ | 0.7819 | 39000 | 0.0151 |
445
+ | 0.7919 | 39500 | 0.0151 |
446
+ | 0.8020 | 40000 | 0.0153 |
447
+ | 0.8120 | 40500 | 0.015 |
448
+ | 0.8220 | 41000 | 0.0149 |
449
+ | 0.8320 | 41500 | 0.015 |
450
+ | 0.8421 | 42000 | 0.0151 |
451
+ | 0.8521 | 42500 | 0.015 |
452
+ | 0.8621 | 43000 | 0.0148 |
453
+ | 0.8721 | 43500 | 0.0147 |
454
+ | 0.8822 | 44000 | 0.0146 |
455
+ | 0.8922 | 44500 | 0.0148 |
456
+ | 0.9022 | 45000 | 0.0149 |
457
+ | 0.9122 | 45500 | 0.0147 |
458
+ | 0.9223 | 46000 | 0.0148 |
459
+ | 0.9323 | 46500 | 0.0148 |
460
+ | 0.9423 | 47000 | 0.0146 |
461
+ | 0.9523 | 47500 | 0.0146 |
462
+ | 0.9623 | 48000 | 0.0147 |
463
+ | 0.9724 | 48500 | 0.0148 |
464
+ | 0.9824 | 49000 | 0.015 |
465
+ | 0.9924 | 49500 | 0.0148 |
466
+
467
+
468
+ ### Framework Versions
469
+ - Python: 3.11.12
470
+ - Sentence Transformers: 3.4.1
471
+ - PyLate: 1.1.7
472
+ - Transformers: 4.48.2
473
+ - PyTorch: 2.6.0+cu124
474
+ - Accelerate: 1.5.2
475
+ - Datasets: 3.5.0
476
+ - Tokenizers: 0.21.1
477
+
478
+
479
+ ## Citation
480
+
481
+ ### BibTeX
482
+
483
+ #### Sentence Transformers
484
+ ```bibtex
485
+ @inproceedings{reimers-2019-sentence-bert,
486
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
487
+ author = "Reimers, Nils and Gurevych, Iryna",
488
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
489
+ month = "11",
490
+ year = "2019",
491
+ publisher = "Association for Computational Linguistics",
492
+ url = "https://arxiv.org/abs/1908.10084"
493
+ }
494
+ ```
495
+
496
+ #### PyLate
497
+ ```bibtex
498
+ @misc{PyLate,
499
+ title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
500
+ author={Chaffin, Antoine and Sourty, Raphaël},
501
+ url={https://github.com/lightonai/pylate},
502
+ year={2024}
503
+ }
504
+ ```
505
+
506
+ <!--
507
+ ## Glossary
508
+
509
+ *Clearly define terms in order to be accessible across audiences.*
510
+ -->
511
+
512
+ <!--
513
+ ## Model Card Authors
514
+
515
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
516
+ -->
517
+
518
+ <!--
519
+ ## Model Card Contact
520
+
521
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
522
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "[D] ": 32001,
3
+ "[Q] ": 32000
4
+ }
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "dbmdz/bert-base-turkish-cased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 32002
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "MaxSim",
10
+ "query_prefix": "[Q] ",
11
+ "document_prefix": "[D] ",
12
+ "query_length": 32,
13
+ "document_length": 180,
14
+ "attend_to_expansion_tokens": false,
15
+ "skiplist_words": [
16
+ "!",
17
+ "\"",
18
+ "#",
19
+ "$",
20
+ "%",
21
+ "&",
22
+ "'",
23
+ "(",
24
+ ")",
25
+ "*",
26
+ "+",
27
+ ",",
28
+ "-",
29
+ ".",
30
+ "/",
31
+ ":",
32
+ ";",
33
+ "<",
34
+ "=",
35
+ ">",
36
+ "?",
37
+ "@",
38
+ "[",
39
+ "\\",
40
+ "]",
41
+ "^",
42
+ "_",
43
+ "`",
44
+ "{",
45
+ "|",
46
+ "}",
47
+ "~"
48
+ ]
49
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:095e3418e994fd11bda4ddb5f5c253251bd415aeb24cbf8962aab29186e226f6
3
+ size 442497888
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Dense",
12
+ "type": "pylate.models.Dense.Dense"
13
+ }
14
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c0e373475093b131cb817fe91ca9f5bf0a0ee1ab098a6a5c30c28bb5ba5029f
3
+ size 881178426
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c568ae937ff73dd213f099be9d8c267a8543cf98db7bf1fc5218ab8bab169e17
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51ac899537951ba0accf9c79a972f564daeff1b42e4bc4626410c6b0d9f4a2b2
3
+ size 1064
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 179,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[MASK]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "32000": {
44
+ "content": "[Q] ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "32001": {
52
+ "content": "[D] ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ }
59
+ },
60
+ "clean_up_tokenization_spaces": true,
61
+ "cls_token": "[CLS]",
62
+ "do_basic_tokenize": true,
63
+ "do_lower_case": false,
64
+ "extra_special_tokens": {},
65
+ "mask_token": "[MASK]",
66
+ "max_len": 512,
67
+ "model_max_length": 512,
68
+ "never_split": null,
69
+ "pad_token": "[MASK]",
70
+ "sep_token": "[SEP]",
71
+ "strip_accents": null,
72
+ "tokenize_chinese_chars": true,
73
+ "tokenizer_class": "BertTokenizer",
74
+ "unk_token": "[UNK]"
75
+ }
trainer_state.json ADDED
@@ -0,0 +1,726 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9924215084806929,
5
+ "eval_steps": 500,
6
+ "global_step": 49500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01002445968162316,
13
+ "grad_norm": 0.27810075879096985,
14
+ "learning_rate": 2.969926620955131e-05,
15
+ "loss": 0.0283,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.02004891936324632,
20
+ "grad_norm": 0.32781505584716797,
21
+ "learning_rate": 2.939853241910261e-05,
22
+ "loss": 0.0244,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.03007337904486948,
27
+ "grad_norm": 0.21168646216392517,
28
+ "learning_rate": 2.9097798628653917e-05,
29
+ "loss": 0.0235,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 0.04009783872649264,
34
+ "grad_norm": 0.15510809421539307,
35
+ "learning_rate": 2.879706483820522e-05,
36
+ "loss": 0.0225,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 0.0501222984081158,
41
+ "grad_norm": 0.2416733056306839,
42
+ "learning_rate": 2.849633104775653e-05,
43
+ "loss": 0.0221,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 0.06014675808973896,
48
+ "grad_norm": 0.19131343066692352,
49
+ "learning_rate": 2.819559725730783e-05,
50
+ "loss": 0.021,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 0.07017121777136212,
55
+ "grad_norm": 0.14675654470920563,
56
+ "learning_rate": 2.7894863466859138e-05,
57
+ "loss": 0.0209,
58
+ "step": 3500
59
+ },
60
+ {
61
+ "epoch": 0.08019567745298528,
62
+ "grad_norm": 0.1758842021226883,
63
+ "learning_rate": 2.7594129676410442e-05,
64
+ "loss": 0.0205,
65
+ "step": 4000
66
+ },
67
+ {
68
+ "epoch": 0.09022013713460844,
69
+ "grad_norm": 0.14844126999378204,
70
+ "learning_rate": 2.729339588596175e-05,
71
+ "loss": 0.0203,
72
+ "step": 4500
73
+ },
74
+ {
75
+ "epoch": 0.1002445968162316,
76
+ "grad_norm": 0.25966688990592957,
77
+ "learning_rate": 2.699266209551305e-05,
78
+ "loss": 0.02,
79
+ "step": 5000
80
+ },
81
+ {
82
+ "epoch": 0.11026905649785476,
83
+ "grad_norm": 0.15259282290935516,
84
+ "learning_rate": 2.6691928305064358e-05,
85
+ "loss": 0.0201,
86
+ "step": 5500
87
+ },
88
+ {
89
+ "epoch": 0.12029351617947792,
90
+ "grad_norm": 0.2339366376399994,
91
+ "learning_rate": 2.6391194514615663e-05,
92
+ "loss": 0.0197,
93
+ "step": 6000
94
+ },
95
+ {
96
+ "epoch": 0.13031797586110108,
97
+ "grad_norm": 0.19134366512298584,
98
+ "learning_rate": 2.609046072416697e-05,
99
+ "loss": 0.0195,
100
+ "step": 6500
101
+ },
102
+ {
103
+ "epoch": 0.14034243554272424,
104
+ "grad_norm": 0.18384341895580292,
105
+ "learning_rate": 2.578972693371827e-05,
106
+ "loss": 0.0195,
107
+ "step": 7000
108
+ },
109
+ {
110
+ "epoch": 0.1503668952243474,
111
+ "grad_norm": 0.12643477320671082,
112
+ "learning_rate": 2.548899314326958e-05,
113
+ "loss": 0.0189,
114
+ "step": 7500
115
+ },
116
+ {
117
+ "epoch": 0.16039135490597056,
118
+ "grad_norm": 0.1328970193862915,
119
+ "learning_rate": 2.5188259352820883e-05,
120
+ "loss": 0.0189,
121
+ "step": 8000
122
+ },
123
+ {
124
+ "epoch": 0.17041581458759372,
125
+ "grad_norm": 0.11257112771272659,
126
+ "learning_rate": 2.488752556237219e-05,
127
+ "loss": 0.0188,
128
+ "step": 8500
129
+ },
130
+ {
131
+ "epoch": 0.18044027426921688,
132
+ "grad_norm": 0.1610465794801712,
133
+ "learning_rate": 2.4586791771923492e-05,
134
+ "loss": 0.0185,
135
+ "step": 9000
136
+ },
137
+ {
138
+ "epoch": 0.19046473395084004,
139
+ "grad_norm": 0.19272467494010925,
140
+ "learning_rate": 2.42860579814748e-05,
141
+ "loss": 0.0186,
142
+ "step": 9500
143
+ },
144
+ {
145
+ "epoch": 0.2004891936324632,
146
+ "grad_norm": 0.14881977438926697,
147
+ "learning_rate": 2.3985324191026104e-05,
148
+ "loss": 0.0185,
149
+ "step": 10000
150
+ },
151
+ {
152
+ "epoch": 0.21051365331408636,
153
+ "grad_norm": 0.1241874098777771,
154
+ "learning_rate": 2.368459040057741e-05,
155
+ "loss": 0.0183,
156
+ "step": 10500
157
+ },
158
+ {
159
+ "epoch": 0.22053811299570952,
160
+ "grad_norm": 0.13214462995529175,
161
+ "learning_rate": 2.3383856610128712e-05,
162
+ "loss": 0.0178,
163
+ "step": 11000
164
+ },
165
+ {
166
+ "epoch": 0.23056257267733268,
167
+ "grad_norm": 0.1579483300447464,
168
+ "learning_rate": 2.308312281968002e-05,
169
+ "loss": 0.018,
170
+ "step": 11500
171
+ },
172
+ {
173
+ "epoch": 0.24058703235895584,
174
+ "grad_norm": 0.15338820219039917,
175
+ "learning_rate": 2.2782389029231324e-05,
176
+ "loss": 0.0179,
177
+ "step": 12000
178
+ },
179
+ {
180
+ "epoch": 0.25061149204057903,
181
+ "grad_norm": 0.25933489203453064,
182
+ "learning_rate": 2.2481655238782632e-05,
183
+ "loss": 0.018,
184
+ "step": 12500
185
+ },
186
+ {
187
+ "epoch": 0.26063595172220216,
188
+ "grad_norm": 0.14008085429668427,
189
+ "learning_rate": 2.2180921448333933e-05,
190
+ "loss": 0.0178,
191
+ "step": 13000
192
+ },
193
+ {
194
+ "epoch": 0.27066041140382535,
195
+ "grad_norm": 0.17158617079257965,
196
+ "learning_rate": 2.188018765788524e-05,
197
+ "loss": 0.0176,
198
+ "step": 13500
199
+ },
200
+ {
201
+ "epoch": 0.2806848710854485,
202
+ "grad_norm": 0.1249169260263443,
203
+ "learning_rate": 2.1579453867436545e-05,
204
+ "loss": 0.0176,
205
+ "step": 14000
206
+ },
207
+ {
208
+ "epoch": 0.29070933076707167,
209
+ "grad_norm": 0.15336212515830994,
210
+ "learning_rate": 2.1278720076987853e-05,
211
+ "loss": 0.0174,
212
+ "step": 14500
213
+ },
214
+ {
215
+ "epoch": 0.3007337904486948,
216
+ "grad_norm": 0.17169423401355743,
217
+ "learning_rate": 2.0977986286539154e-05,
218
+ "loss": 0.0171,
219
+ "step": 15000
220
+ },
221
+ {
222
+ "epoch": 0.310758250130318,
223
+ "grad_norm": 0.12056533992290497,
224
+ "learning_rate": 2.067725249609046e-05,
225
+ "loss": 0.0175,
226
+ "step": 15500
227
+ },
228
+ {
229
+ "epoch": 0.3207827098119411,
230
+ "grad_norm": 0.15232908725738525,
231
+ "learning_rate": 2.0376518705641766e-05,
232
+ "loss": 0.017,
233
+ "step": 16000
234
+ },
235
+ {
236
+ "epoch": 0.3308071694935643,
237
+ "grad_norm": 0.12425834685564041,
238
+ "learning_rate": 2.0075784915193073e-05,
239
+ "loss": 0.0173,
240
+ "step": 16500
241
+ },
242
+ {
243
+ "epoch": 0.34083162917518744,
244
+ "grad_norm": 0.09441632032394409,
245
+ "learning_rate": 1.9775051124744374e-05,
246
+ "loss": 0.0171,
247
+ "step": 17000
248
+ },
249
+ {
250
+ "epoch": 0.35085608885681063,
251
+ "grad_norm": 0.11303837597370148,
252
+ "learning_rate": 1.9474317334295682e-05,
253
+ "loss": 0.017,
254
+ "step": 17500
255
+ },
256
+ {
257
+ "epoch": 0.36088054853843377,
258
+ "grad_norm": 0.13934484124183655,
259
+ "learning_rate": 1.9173583543846986e-05,
260
+ "loss": 0.0166,
261
+ "step": 18000
262
+ },
263
+ {
264
+ "epoch": 0.37090500822005695,
265
+ "grad_norm": 0.17438557744026184,
266
+ "learning_rate": 1.8872849753398294e-05,
267
+ "loss": 0.0168,
268
+ "step": 18500
269
+ },
270
+ {
271
+ "epoch": 0.3809294679016801,
272
+ "grad_norm": 0.10365904122591019,
273
+ "learning_rate": 1.8572115962949595e-05,
274
+ "loss": 0.0166,
275
+ "step": 19000
276
+ },
277
+ {
278
+ "epoch": 0.3909539275833033,
279
+ "grad_norm": 0.10702642053365707,
280
+ "learning_rate": 1.8271382172500902e-05,
281
+ "loss": 0.0165,
282
+ "step": 19500
283
+ },
284
+ {
285
+ "epoch": 0.4009783872649264,
286
+ "grad_norm": 0.08877725899219513,
287
+ "learning_rate": 1.7970648382052207e-05,
288
+ "loss": 0.0165,
289
+ "step": 20000
290
+ },
291
+ {
292
+ "epoch": 0.4110028469465496,
293
+ "grad_norm": 0.1188698559999466,
294
+ "learning_rate": 1.7669914591603514e-05,
295
+ "loss": 0.0168,
296
+ "step": 20500
297
+ },
298
+ {
299
+ "epoch": 0.4210273066281727,
300
+ "grad_norm": 0.08468133956193924,
301
+ "learning_rate": 1.7369180801154815e-05,
302
+ "loss": 0.0164,
303
+ "step": 21000
304
+ },
305
+ {
306
+ "epoch": 0.4310517663097959,
307
+ "grad_norm": 0.09056028723716736,
308
+ "learning_rate": 1.7068447010706123e-05,
309
+ "loss": 0.0163,
310
+ "step": 21500
311
+ },
312
+ {
313
+ "epoch": 0.44107622599141905,
314
+ "grad_norm": 0.14430883526802063,
315
+ "learning_rate": 1.6767713220257427e-05,
316
+ "loss": 0.0166,
317
+ "step": 22000
318
+ },
319
+ {
320
+ "epoch": 0.45110068567304223,
321
+ "grad_norm": 0.0935540571808815,
322
+ "learning_rate": 1.6466979429808735e-05,
323
+ "loss": 0.0163,
324
+ "step": 22500
325
+ },
326
+ {
327
+ "epoch": 0.46112514535466537,
328
+ "grad_norm": 0.08878663927316666,
329
+ "learning_rate": 1.616624563936004e-05,
330
+ "loss": 0.0163,
331
+ "step": 23000
332
+ },
333
+ {
334
+ "epoch": 0.47114960503628855,
335
+ "grad_norm": 0.11340079456567764,
336
+ "learning_rate": 1.5865511848911344e-05,
337
+ "loss": 0.016,
338
+ "step": 23500
339
+ },
340
+ {
341
+ "epoch": 0.4811740647179117,
342
+ "grad_norm": 0.1878892481327057,
343
+ "learning_rate": 1.556477805846265e-05,
344
+ "loss": 0.0163,
345
+ "step": 24000
346
+ },
347
+ {
348
+ "epoch": 0.4911985243995349,
349
+ "grad_norm": 0.06906645745038986,
350
+ "learning_rate": 1.5264044268013956e-05,
351
+ "loss": 0.0164,
352
+ "step": 24500
353
+ },
354
+ {
355
+ "epoch": 0.5012229840811581,
356
+ "grad_norm": 0.11366972327232361,
357
+ "learning_rate": 1.496331047756526e-05,
358
+ "loss": 0.0162,
359
+ "step": 25000
360
+ },
361
+ {
362
+ "epoch": 0.5112474437627812,
363
+ "grad_norm": 0.10021985322237015,
364
+ "learning_rate": 1.4662576687116564e-05,
365
+ "loss": 0.016,
366
+ "step": 25500
367
+ },
368
+ {
369
+ "epoch": 0.5212719034444043,
370
+ "grad_norm": 0.09048577398061752,
371
+ "learning_rate": 1.436184289666787e-05,
372
+ "loss": 0.0158,
373
+ "step": 26000
374
+ },
375
+ {
376
+ "epoch": 0.5312963631260275,
377
+ "grad_norm": 0.12626831233501434,
378
+ "learning_rate": 1.4061109106219175e-05,
379
+ "loss": 0.0158,
380
+ "step": 26500
381
+ },
382
+ {
383
+ "epoch": 0.5413208228076507,
384
+ "grad_norm": 0.10287763178348541,
385
+ "learning_rate": 1.376037531577048e-05,
386
+ "loss": 0.0158,
387
+ "step": 27000
388
+ },
389
+ {
390
+ "epoch": 0.5513452824892738,
391
+ "grad_norm": 0.14862699806690216,
392
+ "learning_rate": 1.3459641525321785e-05,
393
+ "loss": 0.0161,
394
+ "step": 27500
395
+ },
396
+ {
397
+ "epoch": 0.561369742170897,
398
+ "grad_norm": 0.1281166523694992,
399
+ "learning_rate": 1.3158907734873091e-05,
400
+ "loss": 0.0157,
401
+ "step": 28000
402
+ },
403
+ {
404
+ "epoch": 0.5713942018525201,
405
+ "grad_norm": 0.10998209565877914,
406
+ "learning_rate": 1.2858173944424395e-05,
407
+ "loss": 0.0158,
408
+ "step": 28500
409
+ },
410
+ {
411
+ "epoch": 0.5814186615341433,
412
+ "grad_norm": 0.17132391035556793,
413
+ "learning_rate": 1.2557440153975701e-05,
414
+ "loss": 0.0157,
415
+ "step": 29000
416
+ },
417
+ {
418
+ "epoch": 0.5914431212157665,
419
+ "grad_norm": 0.1717221885919571,
420
+ "learning_rate": 1.2256706363527005e-05,
421
+ "loss": 0.0157,
422
+ "step": 29500
423
+ },
424
+ {
425
+ "epoch": 0.6014675808973896,
426
+ "grad_norm": 0.11883345991373062,
427
+ "learning_rate": 1.1955972573078311e-05,
428
+ "loss": 0.0157,
429
+ "step": 30000
430
+ },
431
+ {
432
+ "epoch": 0.6114920405790127,
433
+ "grad_norm": 0.14688880741596222,
434
+ "learning_rate": 1.1655238782629616e-05,
435
+ "loss": 0.0154,
436
+ "step": 30500
437
+ },
438
+ {
439
+ "epoch": 0.621516500260636,
440
+ "grad_norm": 0.09530044347047806,
441
+ "learning_rate": 1.1354504992180922e-05,
442
+ "loss": 0.0155,
443
+ "step": 31000
444
+ },
445
+ {
446
+ "epoch": 0.6315409599422591,
447
+ "grad_norm": 0.14820106327533722,
448
+ "learning_rate": 1.1053771201732226e-05,
449
+ "loss": 0.0154,
450
+ "step": 31500
451
+ },
452
+ {
453
+ "epoch": 0.6415654196238822,
454
+ "grad_norm": 0.14419874548912048,
455
+ "learning_rate": 1.0753037411283532e-05,
456
+ "loss": 0.0155,
457
+ "step": 32000
458
+ },
459
+ {
460
+ "epoch": 0.6515898793055054,
461
+ "grad_norm": 0.10388762503862381,
462
+ "learning_rate": 1.0452303620834836e-05,
463
+ "loss": 0.0155,
464
+ "step": 32500
465
+ },
466
+ {
467
+ "epoch": 0.6616143389871286,
468
+ "grad_norm": 0.2161416858434677,
469
+ "learning_rate": 1.0151569830386142e-05,
470
+ "loss": 0.0153,
471
+ "step": 33000
472
+ },
473
+ {
474
+ "epoch": 0.6716387986687518,
475
+ "grad_norm": 0.15790405869483948,
476
+ "learning_rate": 9.850836039937447e-06,
477
+ "loss": 0.0153,
478
+ "step": 33500
479
+ },
480
+ {
481
+ "epoch": 0.6816632583503749,
482
+ "grad_norm": 0.15143075585365295,
483
+ "learning_rate": 9.550102249488754e-06,
484
+ "loss": 0.0156,
485
+ "step": 34000
486
+ },
487
+ {
488
+ "epoch": 0.691687718031998,
489
+ "grad_norm": 0.09241075813770294,
490
+ "learning_rate": 9.249368459040059e-06,
491
+ "loss": 0.0154,
492
+ "step": 34500
493
+ },
494
+ {
495
+ "epoch": 0.7017121777136213,
496
+ "grad_norm": 0.11710759252309799,
497
+ "learning_rate": 8.948634668591365e-06,
498
+ "loss": 0.0154,
499
+ "step": 35000
500
+ },
501
+ {
502
+ "epoch": 0.7117366373952444,
503
+ "grad_norm": 0.11116410046815872,
504
+ "learning_rate": 8.647900878142669e-06,
505
+ "loss": 0.0151,
506
+ "step": 35500
507
+ },
508
+ {
509
+ "epoch": 0.7217610970768675,
510
+ "grad_norm": 0.11359097808599472,
511
+ "learning_rate": 8.347167087693975e-06,
512
+ "loss": 0.0153,
513
+ "step": 36000
514
+ },
515
+ {
516
+ "epoch": 0.7317855567584907,
517
+ "grad_norm": 0.10080643743276596,
518
+ "learning_rate": 8.04643329724528e-06,
519
+ "loss": 0.0151,
520
+ "step": 36500
521
+ },
522
+ {
523
+ "epoch": 0.7418100164401139,
524
+ "grad_norm": 0.10081745684146881,
525
+ "learning_rate": 7.745699506796585e-06,
526
+ "loss": 0.0152,
527
+ "step": 37000
528
+ },
529
+ {
530
+ "epoch": 0.751834476121737,
531
+ "grad_norm": 0.10837583243846893,
532
+ "learning_rate": 7.444965716347889e-06,
533
+ "loss": 0.015,
534
+ "step": 37500
535
+ },
536
+ {
537
+ "epoch": 0.7618589358033602,
538
+ "grad_norm": 0.08927163481712341,
539
+ "learning_rate": 7.144231925899194e-06,
540
+ "loss": 0.0149,
541
+ "step": 38000
542
+ },
543
+ {
544
+ "epoch": 0.7718833954849834,
545
+ "grad_norm": 0.10133703052997589,
546
+ "learning_rate": 6.843498135450499e-06,
547
+ "loss": 0.015,
548
+ "step": 38500
549
+ },
550
+ {
551
+ "epoch": 0.7819078551666065,
552
+ "grad_norm": 0.0799189880490303,
553
+ "learning_rate": 6.542764345001804e-06,
554
+ "loss": 0.0151,
555
+ "step": 39000
556
+ },
557
+ {
558
+ "epoch": 0.7919323148482297,
559
+ "grad_norm": 0.17656198143959045,
560
+ "learning_rate": 6.24203055455311e-06,
561
+ "loss": 0.0151,
562
+ "step": 39500
563
+ },
564
+ {
565
+ "epoch": 0.8019567745298528,
566
+ "grad_norm": 0.12955822050571442,
567
+ "learning_rate": 5.941296764104415e-06,
568
+ "loss": 0.0153,
569
+ "step": 40000
570
+ },
571
+ {
572
+ "epoch": 0.811981234211476,
573
+ "grad_norm": 0.15526828169822693,
574
+ "learning_rate": 5.6405629736557205e-06,
575
+ "loss": 0.015,
576
+ "step": 40500
577
+ },
578
+ {
579
+ "epoch": 0.8220056938930992,
580
+ "grad_norm": 0.12264149636030197,
581
+ "learning_rate": 5.339829183207026e-06,
582
+ "loss": 0.0149,
583
+ "step": 41000
584
+ },
585
+ {
586
+ "epoch": 0.8320301535747223,
587
+ "grad_norm": 0.11529022455215454,
588
+ "learning_rate": 5.039095392758331e-06,
589
+ "loss": 0.015,
590
+ "step": 41500
591
+ },
592
+ {
593
+ "epoch": 0.8420546132563455,
594
+ "grad_norm": 0.09823550283908844,
595
+ "learning_rate": 4.738361602309636e-06,
596
+ "loss": 0.0151,
597
+ "step": 42000
598
+ },
599
+ {
600
+ "epoch": 0.8520790729379687,
601
+ "grad_norm": 0.11171548813581467,
602
+ "learning_rate": 4.437627811860941e-06,
603
+ "loss": 0.015,
604
+ "step": 42500
605
+ },
606
+ {
607
+ "epoch": 0.8621035326195918,
608
+ "grad_norm": 0.11882694065570831,
609
+ "learning_rate": 4.136894021412246e-06,
610
+ "loss": 0.0148,
611
+ "step": 43000
612
+ },
613
+ {
614
+ "epoch": 0.872127992301215,
615
+ "grad_norm": 0.11933338642120361,
616
+ "learning_rate": 3.836160230963551e-06,
617
+ "loss": 0.0147,
618
+ "step": 43500
619
+ },
620
+ {
621
+ "epoch": 0.8821524519828381,
622
+ "grad_norm": 0.18202197551727295,
623
+ "learning_rate": 3.5354264405148565e-06,
624
+ "loss": 0.0146,
625
+ "step": 44000
626
+ },
627
+ {
628
+ "epoch": 0.8921769116644613,
629
+ "grad_norm": 0.08886628597974777,
630
+ "learning_rate": 3.2346926500661617e-06,
631
+ "loss": 0.0148,
632
+ "step": 44500
633
+ },
634
+ {
635
+ "epoch": 0.9022013713460845,
636
+ "grad_norm": 0.12681321799755096,
637
+ "learning_rate": 2.933958859617467e-06,
638
+ "loss": 0.0149,
639
+ "step": 45000
640
+ },
641
+ {
642
+ "epoch": 0.9122258310277076,
643
+ "grad_norm": 0.12266794592142105,
644
+ "learning_rate": 2.633225069168772e-06,
645
+ "loss": 0.0147,
646
+ "step": 45500
647
+ },
648
+ {
649
+ "epoch": 0.9222502907093307,
650
+ "grad_norm": 0.10776238888502121,
651
+ "learning_rate": 2.332491278720077e-06,
652
+ "loss": 0.0148,
653
+ "step": 46000
654
+ },
655
+ {
656
+ "epoch": 0.932274750390954,
657
+ "grad_norm": 0.08682097494602203,
658
+ "learning_rate": 2.0317574882713823e-06,
659
+ "loss": 0.0148,
660
+ "step": 46500
661
+ },
662
+ {
663
+ "epoch": 0.9422992100725771,
664
+ "grad_norm": 0.11629112809896469,
665
+ "learning_rate": 1.7310236978226874e-06,
666
+ "loss": 0.0146,
667
+ "step": 47000
668
+ },
669
+ {
670
+ "epoch": 0.9523236697542002,
671
+ "grad_norm": 0.12055233120918274,
672
+ "learning_rate": 1.4302899073739926e-06,
673
+ "loss": 0.0146,
674
+ "step": 47500
675
+ },
676
+ {
677
+ "epoch": 0.9623481294358234,
678
+ "grad_norm": 0.1266496479511261,
679
+ "learning_rate": 1.1295561169252977e-06,
680
+ "loss": 0.0147,
681
+ "step": 48000
682
+ },
683
+ {
684
+ "epoch": 0.9723725891174466,
685
+ "grad_norm": 0.26291757822036743,
686
+ "learning_rate": 8.28822326476603e-07,
687
+ "loss": 0.0148,
688
+ "step": 48500
689
+ },
690
+ {
691
+ "epoch": 0.9823970487990697,
692
+ "grad_norm": 0.11209075152873993,
693
+ "learning_rate": 5.280885360279081e-07,
694
+ "loss": 0.015,
695
+ "step": 49000
696
+ },
697
+ {
698
+ "epoch": 0.9924215084806929,
699
+ "grad_norm": 0.15136581659317017,
700
+ "learning_rate": 2.273547455792133e-07,
701
+ "loss": 0.0148,
702
+ "step": 49500
703
+ }
704
+ ],
705
+ "logging_steps": 500,
706
+ "max_steps": 49878,
707
+ "num_input_tokens_seen": 0,
708
+ "num_train_epochs": 1,
709
+ "save_steps": 500,
710
+ "stateful_callbacks": {
711
+ "TrainerControl": {
712
+ "args": {
713
+ "should_epoch_stop": false,
714
+ "should_evaluate": false,
715
+ "should_log": false,
716
+ "should_save": true,
717
+ "should_training_stop": false
718
+ },
719
+ "attributes": {}
720
+ }
721
+ },
722
+ "total_flos": 0.0,
723
+ "train_batch_size": 16,
724
+ "trial_name": null,
725
+ "trial_params": null
726
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:812a2a45e096975f4b14f566d986ddd1fb296a388ea8b0c4317bf56aebeeb85b
3
+ size 5688
vocab.txt ADDED
The diff for this file is too large to render. See raw diff