dclipca commited on
Commit
1b9b0b0
·
verified ·
1 Parent(s): 0560d3a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Qwen2.5-32B-AGI.imatrix.dat filter=lfs diff=lfs merge=lfs -text
37
+ qwen2.5-32b-agi-i1-IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
Qwen2.5-32B-AGI.imatrix.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1d554a745af26d71ea25cf729f995b2bbce3d95d113a81d048512fd2076f6c8
3
+ size 14957089
README.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: AiCloser/Qwen2.5-32B-AGI
3
+ language:
4
+ - en
5
+ license: mit
6
+ quantized_by: SpongeQuant
7
+ tags:
8
+ - SpongeQuant
9
+ - i1-GGUF
10
+ ---
11
+
12
+
13
+ Quantized to `i1-GGUF` using [SpongeQuant](https://github.com/SpongeEngine/SpongeQuant), the Oobabooga of LLM quantization. Chat & support at [Sponge Engine](https://discord.gg/azNmr2Gdgy).
14
+
15
+ <figure>
16
+ <img src="https://huggingface.co/spaces/SpongeEngine/README/resolve/main/003.png" alt="3. Mathematical definitions">
17
+ <figcaption>3. Mathematical definitions</figcaption>
18
+ </figure>
19
+
20
+ <figure>
21
+ <audio controls>
22
+ <source src="https://huggingface.co/spaces/SpongeEngine/README/resolve/main/022.mp3" type="audio/mp3">
23
+ Your browser does not support the audio element.
24
+ </audio>
25
+ <figcaption>22. Symphony No. 5 in C Minor, Opus 67: I. Allegro Con Brio – Philharmonia Orchestra / Otto Klemperer (Ludwig Van Beethoven)</figcaption>
26
+ </figure>
27
+
28
+ ***
29
+ ### What is a GGUF?
30
+ GGUF is a type of file format used for running LLMs (large language models) on different types of computers. It works on both regular processors (CPU) and graphics cards (GPU). Some LLMs need powerful and expensive hardware, but GGUF makes it possible to run them on a wider range of computers, even ones without high-end GPUs. To make this possible, GGUF models use a technique called quantization, which reduces their size and memory usage. This helps them run more efficiently, but at lower settings, the model might lose some accuracy or detail in its responses.
qwen2.5-32b-agi-i1-IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16cca66c0f7cdbcfae34c7f74e8c2b7e48be497f868d42aefb5e877be52f98b8
3
+ size 7274505824