|
--- |
|
license: apache-2.0 |
|
tags: |
|
- StepLaw |
|
- causal-lm |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: step2v2_0618_h2048_ffnh8192_numh16_numl16_lr1.381e-03_bs256_ti3814_mlr1e-5 |
|
results: [] |
|
--- |
|
|
|
# Wandb Model Name: step2v2_0618_h2048_ffnh8192_numh16_numl16_lr1.381e-03_bs256_ti3814_mlr1e-5 |
|
|
|
This model is part of the [StepLaw-N_1.0B-D_1.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_1.0B-D_1.0B) collection. |
|
|
|
## Model Specifications |
|
|
|
### Architecture |
|
- **Hidden size (H)**: 2048 |
|
- **Feed-forward network size (FFN)**: 8192 |
|
- **Attention heads**: 16 |
|
- **Layers**: 16 |
|
- **Parameter count**: 1.1B |
|
|
|
### Training Parameters |
|
- **Learning rate (lr)**: 1.381e-03 |
|
- **Batch size (bs)**: 524288 |
|
- **Training iterations**: 3814 |
|
- **Training tokens (D)**: 2.0B |
|
|
|
## Model Description |
|
|
|
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.381e-03 and batch size 524288 for 3814 iterations, using a total of 2.0B training tokens. |
|
|
|
## Usage Example |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "StepLaw/StepLaw-N_1.0B-D_1.0B-LR1.381e-03-BS524288" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
# Generate text |
|
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=100) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|