--- license: apache-2.0 tags: - StepLaw - causal-lm language: - en library_name: transformers pipeline_tag: text-generation model-index: - name: step2v2_0618_h2048_ffnh8192_numh16_numl16_lr1.105e-02_bs1024_ti9536_mlr1e-5 results: [] --- # Wandb Model Name: step2v2_0618_h2048_ffnh8192_numh16_numl16_lr1.105e-02_bs1024_ti9536_mlr1e-5 This model is part of the [StepLaw-N_1.0B-D_19.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_1.0B-D_19.0B) collection. ## Model Specifications ### Architecture - **Hidden size (H)**: 2048 - **Feed-forward network size (FFN)**: 8192 - **Attention heads**: 16 - **Layers**: 16 - **Parameter count**: 1.1B ### Training Parameters - **Learning rate (lr)**: 1.105e-02 - **Batch size (bs)**: 2097152 - **Training iterations**: 9536 - **Training tokens (D)**: 20.0B ## Model Description StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.105e-02 and batch size 2097152 for 9536 iterations, using a total of 20.0B training tokens. ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "StepLaw/StepLaw-N_1.0B-D_19.0B-LR1.105e-02-BS2097152" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Generate text inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```