--- library_name: transformers license: mit base_model: SamLowe/roberta-base-go_emotions tags: - generated_from_trainer datasets: - sem_eval_2018_task_1 metrics: - f1 - accuracy - precision - recall model-index: - name: roberta-finetuned-sem_eval-english results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2018_task_1 type: sem_eval_2018_task_1 config: subtask5.english split: validation args: subtask5.english metrics: - name: F1 type: f1 value: 0.7211585665193913 - name: Accuracy type: accuracy value: 0.29232505643340856 - name: Precision type: precision value: 0.7679038159958181 - name: Recall type: recall value: 0.6797778806108283 --- # roberta-finetuned-sem_eval-english This model is a fine-tuned version of [SamLowe/roberta-base-go_emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2916 - F1: 0.7212 - Roc Auc: 0.8106 - Accuracy: 0.2923 - Precision: 0.7679 - Recall: 0.6798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:---------:|:------:| | 0.2744 | 1.0 | 855 | 0.2948 | 0.7061 | 0.7988 | 0.2957 | 0.7668 | 0.6543 | | 0.2593 | 2.0 | 1710 | 0.2917 | 0.7144 | 0.8033 | 0.2968 | 0.7781 | 0.6603 | | 0.2315 | 3.0 | 2565 | 0.2916 | 0.7212 | 0.8106 | 0.2923 | 0.7679 | 0.6798 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.0