--- license: mit language: - en pipeline_tag: image-feature-extraction --- # MetaColorModel ## Overview MetaColorModel is a Hugging Face-compatible model designed to extract metadata and dominant colors from images. It is built using PyTorch and the Hugging Face `transformers` library, and can be used for image analysis tasks, such as understanding image properties and identifying the most prominent colors. ## Model Details - **Model Type**: Custom image feature extraction model - **Configuration**: Includes parameters to specify the number of dominant colors (`k`), metadata size, and color size (e.g., RGB). - **Dependencies**: - `transformers` - `Pillow` - `numpy` ## Example Use Case The model can be used in: - Image search and indexing - Content moderation - Color scheme analysis for design and marketing - Metadata extraction for organizing photo libraries ## Installation To use this model, first install the required dependencies: ```bash pip install transformers Pillow numpy ``` ## Usage Here is an example of how to use MetaColorModel: ```python from transformers import AutoConfig from meta_color_model import MetaColorModel # Load the model config = AutoConfig.from_pretrained("Surya2706/meta_color_model") model = MetaColorModel.from_pretrained("Surya2706/meta_color_model", config=config) # Input image path image_path = "example_image.jpg" # Extract metadata and dominant colors result = model.forward(image_path) print("Metadata:", result["metadata"]) print("Dominant Colors:", result["dominant_colors"]) ``` ## Inputs - **Image Path**: A file path to the image you want to process. ## Outputs - **Metadata**: Extracted EXIF metadata (if available). - **Dominant Colors**: A list of the top `k` dominant colors in RGB format. ## Training This model can be trained further or fine-tuned for specific tasks. ### Dataset To train or fine-tune the model, you can prepare a dataset of images and their metadata, structured as follows: ``` data/ ├── images/ │ ├── image1.jpg │ ├── image2.jpg │ └── ... ├── metadata_colors.csv ``` The `metadata_colors.csv` file should contain metadata and dominant color labels for the images. ### Training Script Use the `Trainer` class from Hugging Face or implement a custom PyTorch training loop to fine-tune the model. ## License This model is released under the Apache 2.0 License. ## Citation If you use this model in your work, please cite: ``` @misc{MetaColorModel, title={MetaColorModel: A Hugging Face-Compatible Image Analysis Model}, author={Surya}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/surya2706/image-metadata-extract}} } ``` ## Acknowledgments - Built with the Hugging Face `transformers` library. - Uses `Pillow` for image processing and `numpy` for numerical operations. ## Feedback For questions or feedback, please contact [suryak2706@gmail.com] or open an issue on the [GitHub repository](https://github.com/Surya2706/image-metadata-extract).