MrLight commited on
Commit
dc59c0c
verified
1 Parent(s): 35deccd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -2
README.md CHANGED
@@ -3,11 +3,51 @@ license: apache-2.0
3
  language:
4
  - en
5
  base_model:
6
- - Qwen/Qwen2.5-Math-7B-Instruct
7
  pipeline_tag: question-answering
8
  library_name: transformers
9
  tags:
10
  - verifier
11
  ---
12
 
13
- This is the verifier we used in [General Reasoner](https://github.com/TIGER-AI-Lab/General-Reasoner).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  language:
4
  - en
5
  base_model:
6
+ - Qwen/Qwen2.5-Math-1.5B
7
  pipeline_tag: question-answering
8
  library_name: transformers
9
  tags:
10
  - verifier
11
  ---
12
 
13
+ This is the verifier we used in [General Reasoner](https://github.com/TIGER-AI-Lab/General-Reasoner).
14
+
15
+ ## Usage
16
+ ```python
17
+ from transformers import AutoTokenizer, AutoModelForCausalLM
18
+ import torch
19
+
20
+ # Replace with your model path
21
+ model_path = "TIGER-Lab/general-verifier"
22
+
23
+ # Load tokenizer and model
24
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
25
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16).cuda()
26
+
27
+ # Example inputs
28
+ question = "Factor the following quadratic: $3 x^3+\frac{69 x^2}{2}-36 x-810$"
29
+ ground_truth = "\\frac{3(2x-9)(x+6)(x+10)}{2}"
30
+ student_answer = "\\frac{3}{2}(x+6)(2x-9)(x+10)"
31
+
32
+ # Create prompt
33
+ prompt = (
34
+ f"User: ### Question: {question}\n\n"
35
+ f"### Ground Truth Answer: {ground_truth}\n\n"
36
+ f"### Student Answer: {student_answer}\n\n"
37
+ "For the above question, please verify if the student's answer is equivalent to the ground truth answer.\n"
38
+ "Do not solve the question by yourself; just check if the student's answer is equivalent to the ground truth answer.\n"
39
+ "If the student's answer is correct, output \"Final Decision: Yes\". If the student's answer is incorrect, output \"Final Decision: No\". Assistant:"
40
+ )
41
+
42
+ # Tokenize and generate
43
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
44
+ outputs = model.generate(
45
+ **inputs,
46
+ max_new_tokens=1024,
47
+ temperature=0.0,
48
+ do_sample=False
49
+ )
50
+
51
+ # Decode and print output
52
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
53
+ ```