TRT1000 commited on
Commit
f2b5966
·
verified ·
1 Parent(s): 2c578bc

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - text-classification
6
+ - depression
7
+ - mental-health
8
+ - huggingface
9
+ datasets:
10
+ - thePixel42/depression-detection
11
+ - infamouscoder/depression-reddit-cleaned
12
+ model-index:
13
+ - name: DistilBERT for Depression Detection
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ metrics:
19
+ - name: Evaluation Loss
20
+ type: loss
21
+ value: 0.0631
22
+ ---
23
+
24
+ # DistilBERT for Depression Detection
25
+
26
+ This model is a fine-tuned version of `distilbert-base-uncased` for binary depression classification based on Reddit and mental health-related posts.
27
+
28
+ ## 📊 Training Details
29
+
30
+ - **Base model**: distilbert-base-uncased
31
+ - **Epochs**: 3
32
+ - **Batch size**: 8 (train), 16 (eval)
33
+ - **Optimizer**: AdamW with weight decay
34
+ - **Loss function**: CrossEntropyLoss
35
+ - **Hardware**: Trained using GPU acceleration
36
+
37
+ ## 🧾 Datasets Used
38
+
39
+ - [thePixel42/depression-detection](https://huggingface.co/datasets/thePixel42/depression-detection)
40
+ - [infamouscoder/depression-reddit-cleaned](https://www.kaggle.com/datasets/infamouscoder/depression-reddit-cleaned)
41
+
42
+ The datasets were cleaned to remove rows with missing `text`, labels were binarized (0 = not depressed, 1 = depressed), and duplicates were removed.
43
+
44
+ ## 🧪 Evaluation
45
+
46
+ | Metric | Value |
47
+ |---------------------|-----------|
48
+ | Loss | 0.0631 |
49
+ | Samples/sec | 85.56 |
50
+ | Steps/sec | 5.35 |
51
+
52
+ ## 🚀 Usage
53
+
54
+ ```python
55
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
56
+ import torch
57
+
58
+ model = AutoModelForSequenceClassification.from_pretrained("your-username/depression-detection-model")
59
+ tokenizer = AutoTokenizer.from_pretrained("your-username/depression-detection-model")
60
+
61
+ inputs = tokenizer("I feel sad and hopeless", return_tensors="pt")
62
+ with torch.no_grad():
63
+ logits = model(**inputs).logits
64
+ predicted_class = torch.argmax(logits).item()
65
+
66
+ print("Prediction:", predicted_class)
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "gelu",
3
+ "architectures": [
4
+ "DistilBertForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.1,
7
+ "dim": 768,
8
+ "dropout": 0.1,
9
+ "hidden_dim": 3072,
10
+ "initializer_range": 0.02,
11
+ "max_position_embeddings": 512,
12
+ "model_type": "distilbert",
13
+ "n_heads": 12,
14
+ "n_layers": 6,
15
+ "pad_token_id": 0,
16
+ "problem_type": "single_label_classification",
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.51.3",
23
+ "vocab_size": 30522
24
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:076a8d27d2ee6b9e53210d4a40d6a5fc2d3b46eca3d7330b6301d14100169086
3
+ size 267832560
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff