--- base_model: - Qwen/Qwen2.5-Coder-14B-Instruct tags: - text-generation-inference - transformers - qwen2 - trl license: apache-2.0 language: - en datasets: - Tesslate/UIGEN-T1.5-Dataset --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/bCWPiMgNitTrrONN3SVpw.png) *Landing page showcasing visual richness* # **Model Card for UIGEN-T1.5** --- ## **Model Overview** UIGEN-T1.5 is an advanced transformer-based UI generation model fine-tuned from **Qwen2.5-Coder-14B-Instruct**, specifically enhanced to produce stunning, modern, and unique frontend user interfaces. Leveraging sophisticated reasoning and chain-of-thought methodologies, UIGEN-T1.5 excels at generating highly structured and visually compelling HTML and CSS code, ideal for sleek dashboards, engaging landing pages, and intuitive sign-up forms. --- ## **Model Highlights** - **Advanced UI Styles**: Produces sleek, modern, and unique designs. - **Chain-of-Thought Reasoning**: Enhanced reasoning capabilities for accurate HTML/CSS layouts. - **High Usability**: Generates responsive and production-ready frontend code. --- ## **Visual Examples** *See examples below showcasing UIGEN-T1.5-generated interfaces:* ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/T4nz0JBAvYdwPVpZ_sb3g.png) *Dashboard UI generated by UIGEN-T1.5* --- ## **Use Cases** ### **Recommended Uses** - **Dashboards**: Insightful and visually appealing data interfaces. - **Landing Pages**: Captivating and high-conversion web pages. - **Authentication Screens**: Elegant sign-up and login interfaces. ### **Limitations** - **Limited Interactivity**: Minimal JavaScript functionality, focusing on HTML/CSS. - **Prompt Engineering**: May require specific prompts (e.g., appending "answer"). --- ## **How to Use** ### **Inference Example** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "smirki/UIGEN-T1.5" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") prompt = """<|im_start|>user Design a sleek, modern dashboard for monitoring solar panel efficiency.<|im_end|> <|im_start|>assistant <|im_start|>think """ inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=12012, do_sample=True, temperature=0.7) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ## **Performance and Evaluation** - **Strengths**: - High-quality UI generation. - Strong reasoning capabilities for structured layouts. - **Weaknesses**: - Occasional repetitive design patterns. - Minor artifacting in complex designs. --- ## **Technical Specifications** - **Architecture**: Transformer-based LLM - **Base Model**: Qwen2.5-Coder-7B-Instruct - **Precision**: bf16 mixed precision, quantized to q8 - **Hardware Requirements**: Recommended 12GB VRAM - **Software Dependencies**: - Hugging Face Transformers - PyTorch --- ## **Citation** ```bibtex @misc{Tesslate_UIGEN-T1.5, title={UIGEN-T1.5: Advanced Chain-of-Thought UI Generation Model}, author={smirki}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/Tesslate/UIGEN-T1.5} } ``` --- ## **Contact & Community** - **Creator:** [smirki](https://huggingface.co/Tesslate) - **Repository & Demo**: Coming soon!