TheBloke commited on
Commit
6c1e0f3
·
1 Parent(s): 89b7c82

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +337 -0
README.md ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - mlabonne/guanaco-llama2-1k
4
+ inference: false
5
+ license: llama2
6
+ model_creator: MayaPH
7
+ model_link: https://huggingface.co/MayaPH/GodziLLa2-70B
8
+ model_name: GodziLLa2 70B
9
+ model_type: llama
10
+ pipeline_tag: text-generation
11
+ quantized_by: TheBloke
12
+ tags:
13
+ - merge
14
+ - mix
15
+ - cot
16
+ ---
17
+
18
+ <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
+ </div>
23
+ <div style="display: flex; justify-content: space-between; width: 100%;">
24
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
+ </div>
27
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
+ </div>
30
+ </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
+ <!-- header end -->
34
+
35
+ # GodziLLa2 70B - GGUF
36
+ - Model creator: [MayaPH](https://huggingface.co/mayaph)
37
+ - Original model: [GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B)
38
+
39
+ ## Description
40
+
41
+ This repo contains GGUF format model files for [MayaPH's GodziLLa2 70B](https://huggingface.co/MayaPH/GodziLLa2-70B).
42
+
43
+ <!-- README_GGUF.md-about-gguf start -->
44
+ ### About GGUF
45
+
46
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
47
+
48
+ The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
49
+
50
+ Here are a list of clients and libraries that are known to support GGUF:
51
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp).
52
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
53
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
54
+ * [LM Studio](https://lmstudio.ai/), version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
55
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
56
+ * [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
57
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
58
+ * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
59
+
60
+ <!-- README_GGUF.md-about-gguf end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ)
65
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML)
67
+ * [MayaPH's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/MayaPH/GodziLLa2-70B)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: Alpaca
72
+
73
+ ```
74
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
75
+
76
+ ### Instruction:
77
+ {prompt}
78
+
79
+ ### Response:
80
+
81
+ ```
82
+
83
+ <!-- prompt-template end -->
84
+ <!-- compatibility_gguf start -->
85
+ ## Compatibility
86
+
87
+ These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
88
+
89
+ They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
90
+
91
+ ## Explanation of quantisation methods
92
+ <details>
93
+ <summary>Click to see details</summary>
94
+
95
+ The new methods available are:
96
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
97
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
98
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
99
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
100
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
101
+
102
+ Refer to the Provided Files table below to see what files use which methods, and how.
103
+ </details>
104
+ <!-- compatibility_gguf end -->
105
+
106
+ <!-- README_GGUF.md-provided-files start -->
107
+ ## Provided files
108
+
109
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
110
+ | ---- | ---- | ---- | ---- | ---- | ----- |
111
+ | [godzilla2-70b.Q8_0.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q8_0.gguf) | Q8_0 | 8 | 10.83 GB| 13.33 GB | very large, extremely low quality loss - not recommended |
112
+ | [godzilla2-70b.Q2_K.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
113
+ | [godzilla2-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
114
+ | [godzilla2-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
115
+ | [godzilla2-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
116
+ | [godzilla2-70b.Q4_0.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
117
+ | [godzilla2-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
118
+ | [godzilla2-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
119
+ | [godzilla2-70b.Q5_0.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
120
+ | [godzilla2-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
121
+ | [godzilla2-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/GodziLLa2-70B-GGUF/blob/main/godzilla2-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
122
+
123
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
124
+
125
+
126
+
127
+ <!-- README_GGUF.md-provided-files end -->
128
+
129
+ <!-- README_GGUF.md-how-to-run start -->
130
+ ## Example `llama.cpp` command
131
+
132
+ Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
133
+
134
+ For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
135
+
136
+ ```
137
+ ./main -t 10 -ngl 32 -m godzilla2-70b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
138
+ ```
139
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
140
+
141
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
142
+
143
+ Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
144
+
145
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
146
+
147
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
148
+
149
+ ## How to run in `text-generation-webui`
150
+
151
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
152
+
153
+ ## How to run from Python code
154
+
155
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
156
+
157
+ ### How to load this model from Python using ctransformers
158
+
159
+ #### First install the package
160
+
161
+ ```bash
162
+ # Base ctransformers with no GPU acceleration
163
+ pip install ctransformers>=0.2.24
164
+ # Or with CUDA GPU acceleration
165
+ pip install ctransformers[cuda]>=0.2.24
166
+ # Or with ROCm GPU acceleration
167
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
168
+ # Or with Metal GPU acceleration for macOS systems
169
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
170
+ ```
171
+
172
+ #### Simple example code to load one of these GGUF models
173
+
174
+ ```python
175
+ from ctransformers import AutoModelForCausalLM
176
+
177
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
178
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/GodziLLa2-70B-GGUF", model_file="godzilla2-70b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
179
+
180
+ print(llm("AI is going to"))
181
+ ```
182
+
183
+ ## How to use with LangChain
184
+
185
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
186
+
187
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
188
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
189
+
190
+ <!-- README_GGUF.md-how-to-run end -->
191
+
192
+ <!-- footer start -->
193
+ <!-- 200823 -->
194
+ ## Discord
195
+
196
+ For further support, and discussions on these models and AI in general, join us at:
197
+
198
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
199
+
200
+ ## Thanks, and how to contribute.
201
+
202
+ Thanks to the [chirper.ai](https://chirper.ai) team!
203
+
204
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
205
+
206
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
207
+
208
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
209
+
210
+ * Patreon: https://patreon.com/TheBlokeAI
211
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
212
+
213
+ **Special thanks to**: Aemon Algiz.
214
+
215
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
216
+
217
+
218
+ Thank you to all my generous patrons and donaters!
219
+
220
+ And thank you again to a16z for their generous grant.
221
+
222
+ <!-- footer end -->
223
+
224
+ <!-- original-model-card start -->
225
+ # Original model card: MayaPH's GodziLLa2 70B
226
+
227
+
228
+ <img src="https://drive.google.com/uc?export=view&id=1D8wxXkS1nsq3uqbOzOLwgx1cLJhY1nvN" alt="GodziLLa2-70B">
229
+ Released August 11, 2023
230
+
231
+ ## Model Description
232
+ GodziLLa 2 70B is an experimental combination of various proprietary LoRAs from Maya Philippines and [Guanaco LLaMA 2 1K dataset](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k), with LLaMA 2 70B. This model's primary purpose is to stress test the limitations of composite, instruction-following LLMs and observe its performance with respect to other LLMs available on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This model debuted in the leaderboard at rank #4 (August 17, 2023) and operates under the Llama 2 license.
233
+ ![Godzilla Happy GIF](https://i.pinimg.com/originals/81/3a/e0/813ae09a30f0bc44130cd2c834fe2eba.gif)
234
+
235
+ ## Open LLM Leaderboard Metrics
236
+ | Metric | Value |
237
+ |-----------------------|-------|
238
+ | MMLU (5-shot) | 69.88 |
239
+ | ARC (25-shot) | 71.42 |
240
+ | HellaSwag (10-shot) | 87.53 |
241
+ | TruthfulQA (0-shot) | 61.54 |
242
+ | Average | 72.59 |
243
+
244
+ According to the leaderboard description, here are the benchmarks used for the evaluation:
245
+ - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot) - a test to measure a text model’s multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
246
+ - [AI2 Reasoning Challenge](https://arxiv.org/abs/1803.05457) -ARC- (25-shot) - a set of grade-school science questions.
247
+ - [HellaSwag](https://arxiv.org/abs/1905.07830) (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
248
+ - [TruthfulQA](https://arxiv.org/abs/2109.07958) (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online.
249
+
250
+ A detailed breakdown of the evaluation can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MayaPH__GodziLLa2-70B). Huge thanks to [@thomwolf](https://huggingface.co/thomwolf).
251
+
252
+ ## Leaderboard Highlights (as of August 17, 2023)
253
+ - Godzilla 2 70B debuts at 4th place worldwide in the Open LLM Leaderboard.
254
+ - Godzilla 2 70B ranks #3 in the ARC challenge.
255
+ - Godzilla 2 70B ranks #5 in the TruthfulQA benchmark.
256
+ - *Godzilla 2 70B beats GPT-3.5 (ChatGPT) in terms of average performance and the HellaSwag benchmark (87.53 > 85.5).
257
+ - *Godzilla 2 70B outperforms GPT-3.5 (ChatGPT) and GPT-4 on the TruthfulQA benchmark (61.54 for G2-70B, 47 for GPT-3.5, 59 for GPT-4).
258
+ - *Godzilla 2 70B is on par with GPT-3.5 (ChatGPT) on the MMLU benchmark (<0.12%).
259
+
260
+ *Based on a [leaderboard clone](https://huggingface.co/spaces/gsaivinay/open_llm_leaderboard) with GPT-3.5 and GPT-4 included.
261
+
262
+ ### Reproducing Evaluation Results
263
+ *Instruction template taken from [Platypus 2 70B instruct](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct).
264
+
265
+ Install LM Evaluation Harness:
266
+ ```
267
+ # clone repository
268
+ git clone https://github.com/EleutherAI/lm-evaluation-harness.git
269
+ # change to repo directory
270
+ cd lm-evaluation-harness
271
+ # check out the correct commit
272
+ git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
273
+ # install
274
+ pip install -e .
275
+ ```
276
+
277
+ ARC:
278
+ ```
279
+ python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/GodziLLa2-70B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/G270B/arc_challenge_25shot.json --device cuda --num_fewshot 25
280
+ ```
281
+
282
+ HellaSwag:
283
+ ```
284
+ python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/GodziLLa2-70B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/G270B/hellaswag_10shot.json --device cuda --num_fewshot 10
285
+ ```
286
+
287
+ MMLU:
288
+ ```
289
+ python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/GodziLLa2-70B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/G270B/mmlu_5shot.json --device cuda --num_fewshot 5
290
+ ```
291
+
292
+ TruthfulQA:
293
+ ```
294
+ python main.py --model hf-causal-experimental --model_args pretrained=MayaPH/GodziLLa2-70B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/G270B/truthfulqa_0shot.json --device cuda
295
+ ```
296
+
297
+ ### Prompt Template
298
+ ```
299
+ ### Instruction:
300
+
301
+ <prompt> (without the <>)
302
+
303
+ ### Response:
304
+ ```
305
+
306
+ ## Technical Considerations
307
+
308
+ When using GodziLLa 2 70B, kindly take note of the following:
309
+ - The default precision is `fp32`, and the total file size that would be loaded onto the RAM/VRAM is around 275 GB. Consider using a lower precision (fp16, int8, int4) to save memory.
310
+ - To further save on memory, set the `low_cpu_mem_usage` argument to True.
311
+ - If you wish to use a quantized version of GodziLLa2-70B, you can either access TheBloke's [GPTQ](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ) or [GGML](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML) version of GodziLLa2-70B.
312
+ - [GodziLLa2-70B-GPTQ](https://huggingface.co/TheBloke/GodziLLa2-70B-GPTQ#description) is available in 4-bit and 3-bit
313
+ - [GodziLLa2-70B-GGML](https://huggingface.co/TheBloke/GodziLLa2-70B-GGML#provided-files) is available in 8-bit, 6-bit, 5-bit, 4-bit, 3-bit, and 2-bit
314
+
315
+ ## Ethical Considerations
316
+ When using GodziLLa 2 70B, it is important to consider the following ethical considerations:
317
+
318
+ 1. **Privacy and Security:** Avoid sharing sensitive personal information while interacting with the model. The model does not have privacy safeguards, so exercise caution when discussing personal or confidential matters.
319
+
320
+ 2. **Fairness and Bias:** The model's responses may reflect biases present in the training data. Be aware of potential biases and make an effort to evaluate responses critically and fairly.
321
+
322
+ 3. **Transparency:** The model operates as a predictive text generator based on patterns learned from the training data. The model's inner workings and the specific training data used are proprietary and not publicly available.
323
+
324
+ 4. **User Responsibility:** Users should take responsibility for their own decisions and not solely rely on the information provided by the model. Consult with the appropriate professionals or reliable sources for specific advice or recommendations.
325
+
326
+ 5. **NSFW Content:** The model is a merge of various datasets and LoRA adapters. It is highly likely that the resulting model contains uncensored content that may include, but is not limited to, violence, gore, explicit language, and sexual content. If you plan to further refine this model for safe/aligned usage, you are highly encouraged to implement guardrails along with it.
327
+
328
+ ## Further Information
329
+ For additional information or inquiries about GodziLLa 2 70B, please contact the Maya Philippines iOps Team via [email protected].
330
+
331
+ ## Disclaimer
332
+ GodziLLa 2 70B is an AI language model from Maya Philippines. It is provided "as is" without warranty of any kind, express or implied. The model developers and Maya Philippines shall not be liable for any direct or indirect damages arising from the use of this model.
333
+
334
+ ## Acknowledgments
335
+ The development of GodziLLa 2 70B was made possible by Maya Philippines and the curation of the various proprietary datasets and creation of the different proprietary LoRA adapters. Special thanks to mlabonne for the Guanaco dataset found [here](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k). Last but not least, huge thanks to [TheBloke](https://huggingface.co/TheBloke) for the quantized models, making our model easily accessible to a wider community.
336
+
337
+ <!-- original-model-card end -->