File size: 31,213 Bytes
b9abe25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5822
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
- source_sentence: "submitted to the CIA for each year.”  Id. at 1–2.  On July 22,\
    \ 2010, the CIA responded to this \nrequest, stating “[w]e . . . have determined\
    \ that our record systems are not configured in a way \nthat would allow us to\
    \ perform a search reasonably calculated to lead to the responsive record \nwithout\
    \ an unreasonable effort.”  First Lutz Decl. Ex. L at 1, No. 11-444, ECF No. 20-3.\
    \  As a"
  sentences:
  - How many instances of individual's names does the plaintiff point to?
  - What date did the CIA respond to the request?
  - What phrase does the Bar propose to delete references to in the Preamble to Chapter
    4?
- source_sentence: "City Department of Education, the self-represented plaintiff \n\
    submitted a filing containing hallucinations.  No. 24-cv-04232, \n \n20 \n2024\
    \ WL 3460049, at *7 (S.D.N.Y. July 18, 2024) (unpublished \nopinion).  The court\
    \ noted that “[s]anctions may be imposed for \nsubmitting false and nonexistent\
    \ legal authority to the [c]ourt.”  Id.  \nHowever, the court declined to impose\
    \ sanctions due to the"
  sentences:
  - In which sections of their opposition does the plaintiff discuss the deliberative-process
    privilege?
  - Who submitted the filing containing hallucinations?
  - When did the plaintiff file a motion?
- source_sentence: "§ 424 and Exemption 3; Exemption 5; and/or Exemption 6.  See Second\
    \ Williams Decl. Ex. A. \n120 \n \nTherefore, the Court need not decide whether\
    \ the DIA has the independent authority to invoke \nthe National Security Act\
    \ as an Exemption 3 withholding statute. \n3. \nODNI \nFinally, the plaintiff\
    \ challenges the ODNI’s decision to withhold certain portions of e-"
  sentences:
  - How many counts did EPIC bring related to the APA?
  - Which organization's decision is being challenged by the plaintiff?
  - Does the Government agree with EPIC's claim about their Answer?
- source_sentence: "confidentiality agreement/order, that remain following those discussions.\
    \  This is a \nfinal report and notice of exceptions shall be filed within three\
    \ days of the date of \nthis report, pursuant to Court of Chancery Rule 144(d)(2),\
    \ given the expedited and \nsummary nature of Section 220 proceedings.  \n \n\
    \ \n \n \n \n \n \nRespectfully, \n \n \n \n \n \n \n \n \n/s/ Patricia W. Griffin"
  sentences:
  - Who signed this document?
  - Did Mr. Mooney allege that the video was altered or tampered with?
  - Did the plaintiff report the defendant at that time?
- source_sentence: "such an argument, and she does not offer any case law, cites to\
    \ secondary sources, dictionaries \nor grammatical texts, arguments by analogy,\
    \ or other citations, except for the mere assertion \nthat defendant failed to\
    \ move in a timely fashion after he was “on notice” of the ex parte order. \n\
    A reviewing court is entitled to have issues clearly defined with relevant authority\
    \ cited."
  sentences:
  - What page is Cross-MJAR's emphasis mentioned on?
  - What mere assertion does she make?
  - On what dates did the Commission meet in 2019?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: nomic-embed-text-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.5486862442040186
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5965996908809892
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7017001545595054
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7697063369397218
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5486862442040186
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5239567233384853
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.40989180834621336
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.24142194744976814
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.19049459041731065
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5101751674394642
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6503091190108191
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7595311695002576
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6615339195276682
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6004440519123668
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6427552042140723
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.5409582689335394
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.58887171561051
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6924265842349304
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7743431221020093
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5409582689335394
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.5172591447707368
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.4034003091190108
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.24188562596599691
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18740340030911898
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5054095826893354
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6411643482740855
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7622359608449253
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6576404555647709
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5934416476533937
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6355153178607286
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.508500772797527
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5564142194744977
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6707882534775889
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7449768160741885
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.508500772797527
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.4873776403915508
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.38639876352395675
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.23122102009273574
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.17671303451828954
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.47707367336424517
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6141164348274084
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7257856774858321
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6257588263652936
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.562961531856431
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6091899586876254
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.45131375579598143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5054095826893354
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.58887171561051
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6862442040185471
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.45131375579598143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.437403400309119
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.3415765069551777
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.21298299845440496
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.15700669757856775
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4282586295723854
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5426326635754766
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6720762493560021
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5679548352076085
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.503881160913618
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5511797935827811
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.35239567233384855
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.3894899536321484
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.47295208655332305
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5641421947449768
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.35239567233384855
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33900051519835134
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.26955177743431225
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1723338485316847
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.12171561051004637
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.33217413704276144
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4310922205048943
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5446934569809376
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.45200452556542003
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.39659662422413555
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.44614347894124107
      name: Cosine Map@100
---

# nomic-embed-text-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision a03db6748c80237063eb0546ac6b627eca2318cb -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Thejina/nomic-embed-text-finetuned")
# Run inference
sentences = [
    'such an argument, and she does not offer any case law, cites to secondary sources, dictionaries \nor grammatical texts, arguments by analogy, or other citations, except for the mere assertion \nthat defendant failed to move in a timely fashion after he was “on notice” of the ex parte order. \nA reviewing court is entitled to have issues clearly defined with relevant authority cited.',
    'What mere assertion does she make?',
    "What page is Cross-MJAR's emphasis mentioned on?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 768
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5487     |
| cosine_accuracy@3   | 0.5966     |
| cosine_accuracy@5   | 0.7017     |
| cosine_accuracy@10  | 0.7697     |
| cosine_precision@1  | 0.5487     |
| cosine_precision@3  | 0.524      |
| cosine_precision@5  | 0.4099     |
| cosine_precision@10 | 0.2414     |
| cosine_recall@1     | 0.1905     |
| cosine_recall@3     | 0.5102     |
| cosine_recall@5     | 0.6503     |
| cosine_recall@10    | 0.7595     |
| **cosine_ndcg@10**  | **0.6615** |
| cosine_mrr@10       | 0.6004     |
| cosine_map@100      | 0.6428     |

#### Information Retrieval

* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 512
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.541      |
| cosine_accuracy@3   | 0.5889     |
| cosine_accuracy@5   | 0.6924     |
| cosine_accuracy@10  | 0.7743     |
| cosine_precision@1  | 0.541      |
| cosine_precision@3  | 0.5173     |
| cosine_precision@5  | 0.4034     |
| cosine_precision@10 | 0.2419     |
| cosine_recall@1     | 0.1874     |
| cosine_recall@3     | 0.5054     |
| cosine_recall@5     | 0.6412     |
| cosine_recall@10    | 0.7622     |
| **cosine_ndcg@10**  | **0.6576** |
| cosine_mrr@10       | 0.5934     |
| cosine_map@100      | 0.6355     |

#### Information Retrieval

* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 256
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5085     |
| cosine_accuracy@3   | 0.5564     |
| cosine_accuracy@5   | 0.6708     |
| cosine_accuracy@10  | 0.745      |
| cosine_precision@1  | 0.5085     |
| cosine_precision@3  | 0.4874     |
| cosine_precision@5  | 0.3864     |
| cosine_precision@10 | 0.2312     |
| cosine_recall@1     | 0.1767     |
| cosine_recall@3     | 0.4771     |
| cosine_recall@5     | 0.6141     |
| cosine_recall@10    | 0.7258     |
| **cosine_ndcg@10**  | **0.6258** |
| cosine_mrr@10       | 0.563      |
| cosine_map@100      | 0.6092     |

#### Information Retrieval

* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 128
  }
  ```

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.4513    |
| cosine_accuracy@3   | 0.5054    |
| cosine_accuracy@5   | 0.5889    |
| cosine_accuracy@10  | 0.6862    |
| cosine_precision@1  | 0.4513    |
| cosine_precision@3  | 0.4374    |
| cosine_precision@5  | 0.3416    |
| cosine_precision@10 | 0.213     |
| cosine_recall@1     | 0.157     |
| cosine_recall@3     | 0.4283    |
| cosine_recall@5     | 0.5426    |
| cosine_recall@10    | 0.6721    |
| **cosine_ndcg@10**  | **0.568** |
| cosine_mrr@10       | 0.5039    |
| cosine_map@100      | 0.5512    |

#### Information Retrieval

* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 64
  }
  ```

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.3524    |
| cosine_accuracy@3   | 0.3895    |
| cosine_accuracy@5   | 0.473     |
| cosine_accuracy@10  | 0.5641    |
| cosine_precision@1  | 0.3524    |
| cosine_precision@3  | 0.339     |
| cosine_precision@5  | 0.2696    |
| cosine_precision@10 | 0.1723    |
| cosine_recall@1     | 0.1217    |
| cosine_recall@3     | 0.3322    |
| cosine_recall@5     | 0.4311    |
| cosine_recall@10    | 0.5447    |
| **cosine_ndcg@10**  | **0.452** |
| cosine_mrr@10       | 0.3966    |
| cosine_map@100      | 0.4461    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 5,822 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 46 tokens</li><li>mean: 91.09 tokens</li><li>max: 324 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.89 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                               | anchor                                                                       |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|
  | <code>functional test, too.  Id. at 89–90.  Still, the Court made clear that this functional test was “not <br>relevant.”  Id. at 90.  So, just as in Energy Research, its application of the functional test was <br>dicta.  And because this discussion relied on the dicta from Energy Research, this was dicta <br>upon dicta. <br> <br> The Government is thus imprecise when it asserts as the “law of the case” that the</code> | <code>What page is the functional test mentioned as 'not relevant'?</code>   |
  | <code>authenticated through his testimony under Maryland Rule 5-901(b)(1) as a witness with <br>personal knowledge of the events. <br>- 6 - <br>The part of the video depicting the shooting was properly authenticated through <br>circumstantial evidence under Maryland Rule 5-901(b)(4), as there was sufficient <br>circumstantial evidence from which a reasonable juror could have inferred that the video</code>               | <code>Which part of the video was authenticated?</code>                      |
  | <code>KLAN202300916 <br> <br> <br> <br> <br>9<br>Los derechos morales, a su vez, están fundamentalmente <br>protegidos por la legislación estatal. Esta reconoce los derechos de <br>los autores como exclusivos de estos y los protege no solo en <br>beneficio propio, sino también de la sociedad por la contribución <br>social y cultural que históricamente se le ha reconocido a la</code>                                      | <code>¿En beneficio de quién se protegen los derechos de los autores?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8791     | 10     | 69.7578       | -                      | -                      | -                      | -                      | -                     |
| 1.0        | 12     | -             | 0.6178                 | 0.6069                 | 0.5742                 | 0.5088                 | 0.4115                |
| 1.7033     | 20     | 28.4334       | -                      | -                      | -                      | -                      | -                     |
| 2.0        | 24     | -             | 0.6589                 | 0.6509                 | 0.6268                 | 0.5616                 | 0.4494                |
| 2.5275     | 30     | 20.1123       | -                      | -                      | -                      | -                      | -                     |
| 3.0        | 36     | -             | 0.6621                 | 0.6573                 | 0.6263                 | 0.5677                 | 0.4508                |
| 3.3516     | 40     | 16.5444       | -                      | -                      | -                      | -                      | -                     |
| **3.7033** | **44** | **-**         | **0.6615**             | **0.6576**             | **0.6258**             | **0.568**              | **0.452**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->