metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5822
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
- source_sentence: >-
submitted to the CIA for each year.” Id. at 1–2. On July 22, 2010, the
CIA responded to this
request, stating “[w]e . . . have determined that our record systems are
not configured in a way
that would allow us to perform a search reasonably calculated to lead to
the responsive record
without an unreasonable effort.” First Lutz Decl. Ex. L at 1, No. 11-444,
ECF No. 20-3. As a
sentences:
- How many instances of individual's names does the plaintiff point to?
- What date did the CIA respond to the request?
- >-
What phrase does the Bar propose to delete references to in the Preamble
to Chapter 4?
- source_sentence: |-
City Department of Education, the self-represented plaintiff
submitted a filing containing hallucinations. No. 24-cv-04232,
20
2024 WL 3460049, at *7 (S.D.N.Y. July 18, 2024) (unpublished
opinion). The court noted that “[s]anctions may be imposed for
submitting false and nonexistent legal authority to the [c]ourt.” Id.
However, the court declined to impose sanctions due to the
sentences:
- >-
In which sections of their opposition does the plaintiff discuss the
deliberative-process privilege?
- Who submitted the filing containing hallucinations?
- When did the plaintiff file a motion?
- source_sentence: >-
§ 424 and Exemption 3; Exemption 5; and/or Exemption 6. See Second
Williams Decl. Ex. A.
120
Therefore, the Court need not decide whether the DIA has the independent
authority to invoke
the National Security Act as an Exemption 3 withholding statute.
3.
ODNI
Finally, the plaintiff challenges the ODNI’s decision to withhold certain
portions of e-
sentences:
- How many counts did EPIC bring related to the APA?
- Which organization's decision is being challenged by the plaintiff?
- Does the Government agree with EPIC's claim about their Answer?
- source_sentence: >-
confidentiality agreement/order, that remain following those discussions.
This is a
final report and notice of exceptions shall be filed within three days of
the date of
this report, pursuant to Court of Chancery Rule 144(d)(2), given the
expedited and
summary nature of Section 220 proceedings.
Respectfully,
/s/ Patricia W. Griffin
sentences:
- Who signed this document?
- Did Mr. Mooney allege that the video was altered or tampered with?
- Did the plaintiff report the defendant at that time?
- source_sentence: >-
such an argument, and she does not offer any case law, cites to secondary
sources, dictionaries
or grammatical texts, arguments by analogy, or other citations, except for
the mere assertion
that defendant failed to move in a timely fashion after he was “on notice”
of the ex parte order.
A reviewing court is entitled to have issues clearly defined with relevant
authority cited.
sentences:
- What page is Cross-MJAR's emphasis mentioned on?
- What mere assertion does she make?
- On what dates did the Commission meet in 2019?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: nomic-embed-text-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5486862442040186
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5965996908809892
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7017001545595054
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7697063369397218
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5486862442040186
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5239567233384853
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.40989180834621336
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.24142194744976814
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19049459041731065
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5101751674394642
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6503091190108191
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7595311695002576
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6615339195276682
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6004440519123668
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6427552042140723
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5409582689335394
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.58887171561051
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6924265842349304
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7743431221020093
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5409582689335394
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5172591447707368
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.4034003091190108
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.24188562596599691
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18740340030911898
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5054095826893354
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6411643482740855
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7622359608449253
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6576404555647709
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5934416476533937
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6355153178607286
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.508500772797527
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5564142194744977
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6707882534775889
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7449768160741885
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.508500772797527
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4873776403915508
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.38639876352395675
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.23122102009273574
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.17671303451828954
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.47707367336424517
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6141164348274084
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7257856774858321
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6257588263652936
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.562961531856431
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6091899586876254
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.45131375579598143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5054095826893354
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.58887171561051
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6862442040185471
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.45131375579598143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.437403400309119
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.3415765069551777
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.21298299845440496
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.15700669757856775
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4282586295723854
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5426326635754766
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6720762493560021
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5679548352076085
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.503881160913618
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5511797935827811
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.35239567233384855
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3894899536321484
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.47295208655332305
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5641421947449768
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.35239567233384855
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33900051519835134
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.26955177743431225
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1723338485316847
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12171561051004637
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.33217413704276144
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4310922205048943
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5446934569809376
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.45200452556542003
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.39659662422413555
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.44614347894124107
name: Cosine Map@100
nomic-embed-text-v1.5
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Thejina/nomic-embed-text-finetuned")
sentences = [
'such an argument, and she does not offer any case law, cites to secondary sources, dictionaries \nor grammatical texts, arguments by analogy, or other citations, except for the mere assertion \nthat defendant failed to move in a timely fashion after he was “on notice” of the ex parte order. \nA reviewing court is entitled to have issues clearly defined with relevant authority cited.',
'What mere assertion does she make?',
"What page is Cross-MJAR's emphasis mentioned on?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5487 |
cosine_accuracy@3 |
0.5966 |
cosine_accuracy@5 |
0.7017 |
cosine_accuracy@10 |
0.7697 |
cosine_precision@1 |
0.5487 |
cosine_precision@3 |
0.524 |
cosine_precision@5 |
0.4099 |
cosine_precision@10 |
0.2414 |
cosine_recall@1 |
0.1905 |
cosine_recall@3 |
0.5102 |
cosine_recall@5 |
0.6503 |
cosine_recall@10 |
0.7595 |
cosine_ndcg@10 |
0.6615 |
cosine_mrr@10 |
0.6004 |
cosine_map@100 |
0.6428 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.541 |
cosine_accuracy@3 |
0.5889 |
cosine_accuracy@5 |
0.6924 |
cosine_accuracy@10 |
0.7743 |
cosine_precision@1 |
0.541 |
cosine_precision@3 |
0.5173 |
cosine_precision@5 |
0.4034 |
cosine_precision@10 |
0.2419 |
cosine_recall@1 |
0.1874 |
cosine_recall@3 |
0.5054 |
cosine_recall@5 |
0.6412 |
cosine_recall@10 |
0.7622 |
cosine_ndcg@10 |
0.6576 |
cosine_mrr@10 |
0.5934 |
cosine_map@100 |
0.6355 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5085 |
cosine_accuracy@3 |
0.5564 |
cosine_accuracy@5 |
0.6708 |
cosine_accuracy@10 |
0.745 |
cosine_precision@1 |
0.5085 |
cosine_precision@3 |
0.4874 |
cosine_precision@5 |
0.3864 |
cosine_precision@10 |
0.2312 |
cosine_recall@1 |
0.1767 |
cosine_recall@3 |
0.4771 |
cosine_recall@5 |
0.6141 |
cosine_recall@10 |
0.7258 |
cosine_ndcg@10 |
0.6258 |
cosine_mrr@10 |
0.563 |
cosine_map@100 |
0.6092 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4513 |
cosine_accuracy@3 |
0.5054 |
cosine_accuracy@5 |
0.5889 |
cosine_accuracy@10 |
0.6862 |
cosine_precision@1 |
0.4513 |
cosine_precision@3 |
0.4374 |
cosine_precision@5 |
0.3416 |
cosine_precision@10 |
0.213 |
cosine_recall@1 |
0.157 |
cosine_recall@3 |
0.4283 |
cosine_recall@5 |
0.5426 |
cosine_recall@10 |
0.6721 |
cosine_ndcg@10 |
0.568 |
cosine_mrr@10 |
0.5039 |
cosine_map@100 |
0.5512 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3524 |
cosine_accuracy@3 |
0.3895 |
cosine_accuracy@5 |
0.473 |
cosine_accuracy@10 |
0.5641 |
cosine_precision@1 |
0.3524 |
cosine_precision@3 |
0.339 |
cosine_precision@5 |
0.2696 |
cosine_precision@10 |
0.1723 |
cosine_recall@1 |
0.1217 |
cosine_recall@3 |
0.3322 |
cosine_recall@5 |
0.4311 |
cosine_recall@10 |
0.5447 |
cosine_ndcg@10 |
0.452 |
cosine_mrr@10 |
0.3966 |
cosine_map@100 |
0.4461 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 46 tokens
- mean: 91.09 tokens
- max: 324 tokens
|
- min: 7 tokens
- mean: 16.89 tokens
- max: 43 tokens
|
- Samples:
positive |
anchor |
functional test, too. Id. at 89–90. Still, the Court made clear that this functional test was “not relevant.” Id. at 90. So, just as in Energy Research, its application of the functional test was dicta. And because this discussion relied on the dicta from Energy Research, this was dicta upon dicta. The Government is thus imprecise when it asserts as the “law of the case” that the |
What page is the functional test mentioned as 'not relevant'? |
authenticated through his testimony under Maryland Rule 5-901(b)(1) as a witness with personal knowledge of the events. - 6 - The part of the video depicting the shooting was properly authenticated through circumstantial evidence under Maryland Rule 5-901(b)(4), as there was sufficient circumstantial evidence from which a reasonable juror could have inferred that the video |
Which part of the video was authenticated? |
KLAN202300916 9 Los derechos morales, a su vez, están fundamentalmente protegidos por la legislación estatal. Esta reconoce los derechos de los autores como exclusivos de estos y los protege no solo en beneficio propio, sino también de la sociedad por la contribución social y cultural que históricamente se le ha reconocido a la |
¿En beneficio de quién se protegen los derechos de los autores? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
0.8791 |
10 |
69.7578 |
- |
- |
- |
- |
- |
1.0 |
12 |
- |
0.6178 |
0.6069 |
0.5742 |
0.5088 |
0.4115 |
1.7033 |
20 |
28.4334 |
- |
- |
- |
- |
- |
2.0 |
24 |
- |
0.6589 |
0.6509 |
0.6268 |
0.5616 |
0.4494 |
2.5275 |
30 |
20.1123 |
- |
- |
- |
- |
- |
3.0 |
36 |
- |
0.6621 |
0.6573 |
0.6263 |
0.5677 |
0.4508 |
3.3516 |
40 |
16.5444 |
- |
- |
- |
- |
- |
3.7033 |
44 |
- |
0.6615 |
0.6576 |
0.6258 |
0.568 |
0.452 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}