--- base_model: Krystalan/DRT-8B language: - en - zh license: cc-by-nc-sa-4.0 pipeline_tag: text-generation tags: - machine tranlsation - O1-like model - Chat - llama-cpp - gguf-my-repo --- # Triangle104/DRT-8B-Q4_K_S-GGUF This model was converted to GGUF format from [`Krystalan/DRT-8B`](https://huggingface.co/Krystalan/DRT-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Krystalan/DRT-8B) for more details on the model. --- This repository contains the resources for our paper "DRT-o1: Optimized Deep Reasoning Translation via Long Chain-of-Thought" Updates: 2024.12.31: We updated our paper with more detals and analyses. Check it out! 2024.12.31: We released the testing set of our work, please refer to data/test.jsonl 2024.12.30: We released a new model checkpoint using Llama-3.1-8B-Instruct as the backbone, i.e., 🤗 DRT-o1-8B 2024.12.24: We released our paper. Check it out! 2024.12.23: We released our model checkpoints. 🤗 DRT-o1-7B and 🤗 DRT-o1-14B. If you find this work is useful, please consider cite our paper: @article{wang2024drt, title={DRT-o1: Optimized Deep Reasoning Translation via Long Chain-of-Thought}, author={Wang, Jiaan and Meng, Fandong and Liang, Yunlong and Zhou, Jie}, journal={arXiv preprint arXiv:2412.17498}, year={2024} } --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/DRT-8B-Q4_K_S-GGUF --hf-file drt-8b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/DRT-8B-Q4_K_S-GGUF --hf-file drt-8b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/DRT-8B-Q4_K_S-GGUF --hf-file drt-8b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/DRT-8B-Q4_K_S-GGUF --hf-file drt-8b-q4_k_s.gguf -c 2048 ```