--- library_name: transformers license: mit base_model: microsoft/biogpt tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: biogpt-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease config: ncbi_disease split: validation args: ncbi_disease metrics: - name: Precision type: precision value: 0.38144329896907214 - name: Recall type: recall value: 0.4239583333333333 - name: F1 type: f1 value: 0.40157868771583616 - name: Accuracy type: accuracy value: 0.9519533004041311 --- # biogpt-ner This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.1530 - Precision: 0.3814 - Recall: 0.4240 - F1: 0.4016 - Accuracy: 0.9520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1