Text Generation
Transformers
PyTorch
English
llama
text-generation-inference
Ksenia Sycheva commited on
Commit
d5c8126
·
1 Parent(s): 8e6c41c

Add tokenizers

Browse files
.gitattributes CHANGED
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
37
  pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
 
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
37
  pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
38
+ speechtokenizer/SpeechTokenizer.pt filter=lfs diff=lfs merge=lfs -text
39
+ wavtokenizer/WavTokenizer_small_600_24k_4096.ckpt filter=lfs diff=lfs merge=lfs -text
speechtokenizer/SpeechTokenizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d04593b6c9a4b475f91ca481141a6ef5b23e6ac112f347dd2b2717f193c1c728
3
+ size 481906997
speechtokenizer/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "resblock": "1",
3
+ "num_gpus": 3,
4
+ "batch_size": 60,
5
+ "learning_rate": 0.0001,
6
+ "adam_b1": 0.5,
7
+ "adam_b2": 0.9,
8
+ "lr_decay": 0.98,
9
+ "seed": 1234,
10
+ "lambda_distill": 0.15,
11
+
12
+ "n_filters": 64,
13
+ "strides": [8,5,4,2],
14
+ "dimension": 1024,
15
+ "semantic_dimension": 768,
16
+ "bidirectional": true,
17
+ "dilation_base": 2,
18
+ "residual_kernel_size": 3,
19
+ "n_residual_layers": 1,
20
+ "lstm_layers": 2,
21
+ "activation": "ELU",
22
+
23
+
24
+ "segment_size": 48000,
25
+ "num_mels": 80,
26
+ "num_freq": 1025,
27
+ "n_fft": 1024,
28
+ "hop_size": 240,
29
+ "win_size": 1024,
30
+
31
+ "sampling_rate": 16000,
32
+ "sample_rate": 16000,
33
+
34
+ "codebook_size": 1024,
35
+ "n_q": 8,
36
+
37
+ "fmin": 0,
38
+ "fmax": 8000,
39
+ "fmax_for_loss": null,
40
+
41
+ "num_workers": 12,
42
+
43
+ "dist_config": {
44
+ "dist_backend": "nccl",
45
+ "dist_url": "tcp://localhost:54322",
46
+ "world_size": 1
47
+ }
48
+ }
49
+
wavtokenizer/WavTokenizer_small_600_24k_4096.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d44c40fbb83d2d42329ac098e252a31b5708fb7b3bf864d108dd3ed26911d004
3
+ size 1589082492
wavtokenizer/config.yaml ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ seed_everything: 3407
2
+
3
+ data:
4
+ class_path: decoder.dataset.VocosDataModule
5
+ init_args:
6
+ train_params:
7
+ filelist_path: ./WavTokenizer/data/train/libritts_train
8
+ sampling_rate: 24000
9
+ num_samples: 72000
10
+ batch_size: 40 # 20
11
+ num_workers: 8
12
+
13
+ val_params:
14
+ filelist_path: ./WavTokenizer/data/infer/librttts_val
15
+ sampling_rate: 24000
16
+ num_samples: 72000
17
+ batch_size: 5 # 10
18
+ num_workers: 8
19
+
20
+ model:
21
+ class_path: decoder.experiment.WavTokenizer
22
+ init_args:
23
+ sample_rate: 24000
24
+ initial_learning_rate: 2e-4
25
+ mel_loss_coeff: 45
26
+ mrd_loss_coeff: 1.0
27
+ num_warmup_steps: 0 # Optimizers warmup steps
28
+ pretrain_mel_steps: 0 # 0 means GAN objective from the first iteration
29
+
30
+ # automatic evaluation
31
+ evaluate_utmos: true
32
+ evaluate_pesq: true
33
+ evaluate_periodicty: true
34
+
35
+ resume: false
36
+ resume_config: ./WavTokenizer/configs/wavtokenizer_smalldata_frame40_3s_nq1_code16384_dim512_kmeans800_attn.yaml
37
+ resume_model: ./version_3/checkpoints/xxx.ckpt
38
+
39
+ feature_extractor:
40
+ class_path: decoder.feature_extractors.EncodecFeatures
41
+ init_args:
42
+ encodec_model: encodec_24khz
43
+ bandwidths: [6.6, 6.6, 6.6, 6.6]
44
+ train_codebooks: true
45
+ num_quantizers: 1
46
+ dowmsamples: [6, 5, 5, 4]
47
+ vq_bins: 4096
48
+ vq_kmeans: 200
49
+
50
+ backbone:
51
+ class_path: decoder.models.VocosBackbone
52
+ init_args:
53
+ input_channels: 512
54
+ dim: 768
55
+ intermediate_dim: 2304
56
+ num_layers: 12
57
+ adanorm_num_embeddings: 4
58
+
59
+ head:
60
+ class_path: decoder.heads.ISTFTHead
61
+ init_args:
62
+ dim: 768
63
+ n_fft: 2400
64
+ hop_length: 600
65
+ padding: same
66
+
67
+ trainer:
68
+ logger:
69
+ class_path: pytorch_lightning.loggers.TensorBoardLogger
70
+ init_args:
71
+ save_dir: ./WavTokenizer/result/train/wavtokenizer_smalldata_frame40_3s_nq1_code4096_dim512_kmeans200_attn/
72
+ callbacks:
73
+ - class_path: pytorch_lightning.callbacks.LearningRateMonitor
74
+ - class_path: pytorch_lightning.callbacks.ModelSummary
75
+ init_args:
76
+ max_depth: 2
77
+ - class_path: pytorch_lightning.callbacks.ModelCheckpoint
78
+ init_args:
79
+ monitor: val_loss
80
+ filename: wavtokenizer_checkpoint_{epoch}_{step}_{val_loss:.4f}
81
+ save_top_k: 10
82
+ save_last: true
83
+ - class_path: decoder.helpers.GradNormCallback
84
+
85
+ # Lightning calculates max_steps across all optimizer steps (rather than number of batches)
86
+ # This equals to 1M steps per generator and 1M per discriminator
87
+ max_steps: 20000000
88
+ # You might want to limit val batches when evaluating all the metrics, as they are time-consuming
89
+ limit_val_batches: 200
90
+ accelerator: gpu
91
+ strategy: ddp
92
+ devices: [0,1,2,3,4,5,6,7]
93
+ log_every_n_steps: 1000