Ksenia Sycheva
commited on
Commit
·
d5c8126
1
Parent(s):
8e6c41c
Add tokenizers
Browse files
.gitattributes
CHANGED
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
|
37 |
pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
|
37 |
pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
|
38 |
+
speechtokenizer/SpeechTokenizer.pt filter=lfs diff=lfs merge=lfs -text
|
39 |
+
wavtokenizer/WavTokenizer_small_600_24k_4096.ckpt filter=lfs diff=lfs merge=lfs -text
|
speechtokenizer/SpeechTokenizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d04593b6c9a4b475f91ca481141a6ef5b23e6ac112f347dd2b2717f193c1c728
|
3 |
+
size 481906997
|
speechtokenizer/config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 3,
|
4 |
+
"batch_size": 60,
|
5 |
+
"learning_rate": 0.0001,
|
6 |
+
"adam_b1": 0.5,
|
7 |
+
"adam_b2": 0.9,
|
8 |
+
"lr_decay": 0.98,
|
9 |
+
"seed": 1234,
|
10 |
+
"lambda_distill": 0.15,
|
11 |
+
|
12 |
+
"n_filters": 64,
|
13 |
+
"strides": [8,5,4,2],
|
14 |
+
"dimension": 1024,
|
15 |
+
"semantic_dimension": 768,
|
16 |
+
"bidirectional": true,
|
17 |
+
"dilation_base": 2,
|
18 |
+
"residual_kernel_size": 3,
|
19 |
+
"n_residual_layers": 1,
|
20 |
+
"lstm_layers": 2,
|
21 |
+
"activation": "ELU",
|
22 |
+
|
23 |
+
|
24 |
+
"segment_size": 48000,
|
25 |
+
"num_mels": 80,
|
26 |
+
"num_freq": 1025,
|
27 |
+
"n_fft": 1024,
|
28 |
+
"hop_size": 240,
|
29 |
+
"win_size": 1024,
|
30 |
+
|
31 |
+
"sampling_rate": 16000,
|
32 |
+
"sample_rate": 16000,
|
33 |
+
|
34 |
+
"codebook_size": 1024,
|
35 |
+
"n_q": 8,
|
36 |
+
|
37 |
+
"fmin": 0,
|
38 |
+
"fmax": 8000,
|
39 |
+
"fmax_for_loss": null,
|
40 |
+
|
41 |
+
"num_workers": 12,
|
42 |
+
|
43 |
+
"dist_config": {
|
44 |
+
"dist_backend": "nccl",
|
45 |
+
"dist_url": "tcp://localhost:54322",
|
46 |
+
"world_size": 1
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
wavtokenizer/WavTokenizer_small_600_24k_4096.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d44c40fbb83d2d42329ac098e252a31b5708fb7b3bf864d108dd3ed26911d004
|
3 |
+
size 1589082492
|
wavtokenizer/config.yaml
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed_everything: 3407
|
2 |
+
|
3 |
+
data:
|
4 |
+
class_path: decoder.dataset.VocosDataModule
|
5 |
+
init_args:
|
6 |
+
train_params:
|
7 |
+
filelist_path: ./WavTokenizer/data/train/libritts_train
|
8 |
+
sampling_rate: 24000
|
9 |
+
num_samples: 72000
|
10 |
+
batch_size: 40 # 20
|
11 |
+
num_workers: 8
|
12 |
+
|
13 |
+
val_params:
|
14 |
+
filelist_path: ./WavTokenizer/data/infer/librttts_val
|
15 |
+
sampling_rate: 24000
|
16 |
+
num_samples: 72000
|
17 |
+
batch_size: 5 # 10
|
18 |
+
num_workers: 8
|
19 |
+
|
20 |
+
model:
|
21 |
+
class_path: decoder.experiment.WavTokenizer
|
22 |
+
init_args:
|
23 |
+
sample_rate: 24000
|
24 |
+
initial_learning_rate: 2e-4
|
25 |
+
mel_loss_coeff: 45
|
26 |
+
mrd_loss_coeff: 1.0
|
27 |
+
num_warmup_steps: 0 # Optimizers warmup steps
|
28 |
+
pretrain_mel_steps: 0 # 0 means GAN objective from the first iteration
|
29 |
+
|
30 |
+
# automatic evaluation
|
31 |
+
evaluate_utmos: true
|
32 |
+
evaluate_pesq: true
|
33 |
+
evaluate_periodicty: true
|
34 |
+
|
35 |
+
resume: false
|
36 |
+
resume_config: ./WavTokenizer/configs/wavtokenizer_smalldata_frame40_3s_nq1_code16384_dim512_kmeans800_attn.yaml
|
37 |
+
resume_model: ./version_3/checkpoints/xxx.ckpt
|
38 |
+
|
39 |
+
feature_extractor:
|
40 |
+
class_path: decoder.feature_extractors.EncodecFeatures
|
41 |
+
init_args:
|
42 |
+
encodec_model: encodec_24khz
|
43 |
+
bandwidths: [6.6, 6.6, 6.6, 6.6]
|
44 |
+
train_codebooks: true
|
45 |
+
num_quantizers: 1
|
46 |
+
dowmsamples: [6, 5, 5, 4]
|
47 |
+
vq_bins: 4096
|
48 |
+
vq_kmeans: 200
|
49 |
+
|
50 |
+
backbone:
|
51 |
+
class_path: decoder.models.VocosBackbone
|
52 |
+
init_args:
|
53 |
+
input_channels: 512
|
54 |
+
dim: 768
|
55 |
+
intermediate_dim: 2304
|
56 |
+
num_layers: 12
|
57 |
+
adanorm_num_embeddings: 4
|
58 |
+
|
59 |
+
head:
|
60 |
+
class_path: decoder.heads.ISTFTHead
|
61 |
+
init_args:
|
62 |
+
dim: 768
|
63 |
+
n_fft: 2400
|
64 |
+
hop_length: 600
|
65 |
+
padding: same
|
66 |
+
|
67 |
+
trainer:
|
68 |
+
logger:
|
69 |
+
class_path: pytorch_lightning.loggers.TensorBoardLogger
|
70 |
+
init_args:
|
71 |
+
save_dir: ./WavTokenizer/result/train/wavtokenizer_smalldata_frame40_3s_nq1_code4096_dim512_kmeans200_attn/
|
72 |
+
callbacks:
|
73 |
+
- class_path: pytorch_lightning.callbacks.LearningRateMonitor
|
74 |
+
- class_path: pytorch_lightning.callbacks.ModelSummary
|
75 |
+
init_args:
|
76 |
+
max_depth: 2
|
77 |
+
- class_path: pytorch_lightning.callbacks.ModelCheckpoint
|
78 |
+
init_args:
|
79 |
+
monitor: val_loss
|
80 |
+
filename: wavtokenizer_checkpoint_{epoch}_{step}_{val_loss:.4f}
|
81 |
+
save_top_k: 10
|
82 |
+
save_last: true
|
83 |
+
- class_path: decoder.helpers.GradNormCallback
|
84 |
+
|
85 |
+
# Lightning calculates max_steps across all optimizer steps (rather than number of batches)
|
86 |
+
# This equals to 1M steps per generator and 1M per discriminator
|
87 |
+
max_steps: 20000000
|
88 |
+
# You might want to limit val batches when evaluating all the metrics, as they are time-consuming
|
89 |
+
limit_val_batches: 200
|
90 |
+
accelerator: gpu
|
91 |
+
strategy: ddp
|
92 |
+
devices: [0,1,2,3,4,5,6,7]
|
93 |
+
log_every_n_steps: 1000
|