File size: 15,665 Bytes
b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 7b9dd1f b7daaf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
---
base_model:
- meta-llama/Llama-3.2-1B-Instruct
datasets:
- VocalNet/VoiceAssitant-430K-vocalnet
- VocalNet/UltraChat-vocalnet
language:
- en
license: apache-2.0
pipeline_tag: audio-text-to-text
library_name: transformers
---
## ๐ง VocalNet-1B Model Card
**VocalNet-1B** is a high-performance, low-latency speech large language model (LLM) optimized for real-time voice interaction. Built upon [LLaMA-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct), it employs **multi-token prediction (MTP)** to significantly enhance generation speed and quality, surpassing most mainstream speech and omni-modal LLMs. ๐
### ๐ Paper, Code and Model Access
- **Arxiv**: [VocalNet Report](https://arxiv.org/abs/2504.04060) ๐
- **GitHub**: [VocalNet Repository](https://github.com/SJTU-OmniAgent/VocalNet) ๐
- **HuggingFace**: [VocalNet/VocalNet-1B](https://huggingface.co/VocalNet/VocalNet-1B) ๐ค
- **ModelScope**: [VocalNet/VocalNet-1B](https://www.modelscope.cn/models/VocalNet/VocalNet-1B) ๐ฎ
### ๐ง Repository Download and Environment Setup
To get started with **VocalNet-1B**, clone the repository and set up the environment as follows. ๐ ๏ธ
1. **Clone the Repository**:
```bash
git clone https://github.com/SJTU-OmniAgent/VocalNet.git
cd VocalNet
```
2. **Create and Activate Environment**:
```bash
conda create -n vocalnet python==3.10
conda activate vocalnet
```
3. **Install Dependencies**:
```bash
pip install --upgrade pip
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install -e .
```
4. **Optional: Install Training Packages**:
If you plan to train the model, install additional packages:
```bash
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
```
### ๐ฅ Download Instructions
**Via Huggingface Cli**:
```bash
pip install -U huggingface_hub
huggingface-cli download VocalNet/VocalNet-1B --local-dir ./checkpoints/
```
**Via Snapshot Download**:
```bash
pip install -U huggingface_hub
```
```python
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="VocalNet/VocalNet-1B",
local_dir="./checkpoints/",
resume_download=True
)
```
**Via Git**:
```bash
git lfs install
git clone https://huggingface.co/VocalNet/VocalNet-1B
```
### ๐ ๏ธ Dependencies
- **Speech Encoder**: [Whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) ๐ค
- **Vocoder**: [CosyVoice2-0.5B](https://huggingface.co/FunAudioLLM/CosyVoice2-0.5B) for converting speech tokens to audio waveforms. ๐
### ๐ Local Inference
To perform inference with **VocalNet-1B**, follow these steps to set up and run the model locally. ๐ก
1. **Model Preparation**:
- Download **VocalNet-1B** from [HuggingFace](https://huggingface.co/VocalNet/VocalNet-1B) or [ModelScope](https://www.modelscope.cn/models/VocalNet/VocalNet-1B). ๐ฆ
- Download the **Whisper-large-v3** speech encoder from [HuggingFace](https://huggingface.co/openai/whisper-large-v3) and place it in the `./models/speech_encoder/` directory. ๐ค
2. **CosyVoice Preparation**:
- VocalNet-1B uses **CosyVoice2-0.5B** to convert generated speech tokens into audio waveforms. Download it from [HuggingFace](https://huggingface.co/FunAudioLLM/CosyVoice2-0.5B). ๐
3. **Path Modification**:
- Update the paths in `omni_speech/infer/vocalnet.py` to point to the downloaded models:
```python
COSYVOICE_MODEL="" # Path to CosyVoice2-0.5B, e.g., /workspace/CosyVoice/pretrained_models/CosyVoice2-0.5B-VocalNet
VOCALNET_MODEL="" # Path to VocalNet-1B, e.g., ./checkpoints/VocalNet-1B
```
4. **Run Inference**:
- For **speech-to-text (S2T)** inference:
```bash
python3 omni_speech/infer/vocalnet.py --query_audio ./omni_speech/infer/llama_questions_42.wav
```
- For **speech-to-speech (S2S)** inference:
```bash
python3 omni_speech/infer/vocalnet.py --query_audio ./omni_speech/infer/llama_questions_42.wav --s2s --save_dir ./
```
### ๐ Performance Evaluation
VocalNet-1B was evaluated on [OpenAudioBench](https://huggingface.co/datasets/baichuan-inc/OpenAudioBench), covering AlpacaEval, LLaMA Questions, TriviaQA, and Web Questions. **Bold** indicates the optimal result in each subgroup.
#### Overall Performance
<div align="center">
<table style="margin: 0 auto; text-align: center; border-collapse: collapse; font-size: 14px;">
<thead>
<tr style="background-color: #f2f2f2;">
<th style="padding: 10px; border: 1px solid #ddd;">Model</th>
<th style="padding: 10px; border: 1px solid #ddd;">LLM Size</th>
<th style="padding: 10px; border: 1px solid #ddd;">Modality</th>
<th style="padding: 10px; border: 1px solid #ddd;">AlpacaEval</th>
<th style="padding: 10px; border: 1px solid #ddd;">LLaMA Questions</th>
<th style="padding: 10px; border: 1px solid #ddd;">TriviaQA</th>
<th style="padding: 10px; border: 1px solid #ddd;">Web Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="7" style="padding: 10px; border: 1px solid #ddd; font-weight: bold; background-color: #e6f3ff;">Tiny Models</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">Mini-Omni</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">0.5B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;">1.84</td>
<td style="padding: 10px; border: 1px solid #ddd;">2.7</td>
<td style="padding: 10px; border: 1px solid #ddd;">0.12</td>
<td style="padding: 10px; border: 1px solid #ddd;">0.22</td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;">1.80</td>
<td style="padding: 10px; border: 1px solid #ddd;">2.7</td>
<td style="padding: 10px; border: 1px solid #ddd;">0.08</td>
<td style="padding: 10px; border: 1px solid #ddd;">0.20</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">SLAM-Omni</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">0.5B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;">3.50</td>
<td style="padding: 10px; border: 1px solid #ddd;">29.4</td>
<td style="padding: 10px; border: 1px solid #ddd;">0.39</td>
<td style="padding: 10px; border: 1px solid #ddd;">0.84</td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;">3.01</td>
<td style="padding: 10px; border: 1px solid #ddd;">26.7</td>
<td style="padding: 10px; border: 1px solid #ddd;">0.34</td>
<td style="padding: 10px; border: 1px solid #ddd;">0.69</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">VocalNet-1B (VA)</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">1B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.38</td>
<td style="padding: 10px; border: 1px solid #ddd;">70.3</td>
<td style="padding: 10px; border: 1px solid #ddd;">3.38</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.93</td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.83</td>
<td style="padding: 10px; border: 1px solid #ddd;">61.0</td>
<td style="padding: 10px; border: 1px solid #ddd;">2.78</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.47</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">VocalNet-1B</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">1B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>5.79</b></td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>71.7</b></td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>3.60</b></td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>5.16</b></td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>5.03</b></td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>63.7</b></td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>3.06</b></td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>4.68</b></td>
</tr>
</tbody>
<tbody>
<tr>
<td colspan="7" style="padding: 10px; border: 1px solid #ddd; font-weight: bold; background-color: #e6f3ff;">Base Models</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">LLaMA-Omni</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">8B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.31</td>
<td style="padding: 10px; border: 1px solid #ddd;">69.7</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.44</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.44</td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;">3.89</td>
<td style="padding: 10px; border: 1px solid #ddd;">55.1</td>
<td style="padding: 10px; border: 1px solid #ddd;">2.44</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.00</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">Freeze-Omni</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">7B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.51</td>
<td style="padding: 10px; border: 1px solid #ddd;">77.7</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.32</td>
<td style="padding: 10px; border: 1px solid #ddd;">6.41</td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;">2.99</td>
<td style="padding: 10px; border: 1px solid #ddd;">60.2</td>
<td style="padding: 10px; border: 1px solid #ddd;">3.53</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.78</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">GLM-4-Voice</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">9B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.86</td>
<td style="padding: 10px; border: 1px solid #ddd;">77.4</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.95</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.56</td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.27</td>
<td style="padding: 10px; border: 1px solid #ddd;">64.3</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.63</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.40</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">Baichuan-Omni-1.5</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">7B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.20</td>
<td style="padding: 10px; border: 1px solid #ddd;">77.6</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.72</td>
<td style="padding: 10px; border: 1px solid #ddd;">6.12</td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.10</td>
<td style="padding: 10px; border: 1px solid #ddd;">61.2</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.13</td>
<td style="padding: 10px; border: 1px solid #ddd;">5.18</td>
</tr>
<tr>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">MiniCPM-o</td>
<td rowspan="2" style="padding: 10px; border: 1px solid #ddd;">8B</td>
<td style="padding: 10px; border: 1px solid #ddd;">sโt</td>
<td style="padding: 10px; border: 1px solid #ddd;">6.13</td>
<td style="padding: 10px; border: 1px solid #ddd;">77.2</td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>6.43</b></td>
<td style="padding: 10px; border: 1px solid #ddd;"><b>7.16</b></td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">sโs</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.95</td>
<td style="padding: 10px; border: 1px solid #ddd;">65.8</td>
<td style="padding: 10px; border: 1px solid #ddd;">4.99</td>
<td style="padding: 10px; border: 1px solid #ddd;"><u>6.22</u></td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">Minmo*</td>
<td style="padding: 10px; border: 1px solid #ddd;">8B</td>
<td>sโt</td>
<td>-</td>
<td>78.9</td>
<td>4.83</td>
<td>5.50</td>
</tr>
<tr>
<td>sโs</td>
<td><b>6.48<br></td>
<td>64.1</td>
<td>3.75</td>
<td>3.99</td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">Qwen2.5-Omni</td>
<td>sโt</td>
<td>6.01</td>
<td><u>79.0</u></td>
<td>5.89</td>
<td><u>6.88</u></td>
</tr>
<tr>
<td>sโs</td>
<td>5.73</td>
<td><b>76.3<br></td>
<td><u>5.59</u></td>
<td><b>6.70<br></td>
</tr>
<tr>
<td style="padding: 10px; border: 1px solid #ddd;">VocalNet-8B (VA)</td>
<td><u>7.05</u></td>
<td><b>4.490<br></td>
<td>77.1</td>
<td>4.503</td>
<td>6.15</td>
<td><b>4.499<br></td>
<td><u>4.21</u></td>
<td><u>4.485</u></td>
<td>4.26</td>
<td><b>4.493<br></td>
</tr>
<tr>
<td>VocalNet-8B</td>
<td><b>7.12<br></td>
<td><u>4.489</u></td>
<td><b>79.5<br></td>
<td>4.500</td>
<td><u>6.24</u></td>
<td>4.482</td>
<td>3.11</td>
<td>4.492</td>
<td><u>3.56</u></td>
<td><u>4.489</u></td>
</tr>
<thead>
<tr>
<th class="tg-c3ow" colspan="11"></th>
</tr>
</thead>
</tbody>
</table>
</div>
</details>
### โ๏ธ Citation
If you find our work useful, please cite:
```bib
@article{wang2025vocalnet,
title={VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation},
author={Wang, Yuhao and Liu, Heyang and Cheng, Ziyang and Wu, Ronghua and Gu, Qunshan and Wang, Yanfeng and Wang, Yu},
journal={arXiv preprint arXiv:2504.04060},
year={2025}
}
``` |