Vuanhngo11 commited on
Commit
1336e93
Β·
verified Β·
1 Parent(s): f2e95d9

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +35 -0
README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <img src="https://github.com/bloomifycafe/blossomsAI/blob/main/assets/logo.png?raw=true" alt="Logo"/>
3
+ </div>
4
+ </br>
5
+ <div align="center">
6
+
7
+ # πŸš€ demo-GGUF
8
+
9
+ ### Optimized quantized models for efficient inference
10
+
11
+ </div>
12
+
13
+ ## πŸ“‹ Overview
14
+
15
+ A collection of optimized GGUF quantized models derived from [demo](https://huggingface.co/BlossomsAI/BloomVN-0.5B-ppo), providing various performance-quality tradeoffs.
16
+
17
+ <div style="width: 100%; text-align: left; margin-left: 0;">
18
+
19
+ ## πŸ’Ž Model Variants
20
+
21
+ | Variant | Use Case | Download |
22
+ |---------|-----------|------------|
23
+ | demo_model_int8 | For mobile and embedded applications where memory and computational resources are limited, the int8 variant provides a good balance between accuracy and performance. | [πŸ“₯](https://huggingface.co/Vuanhngo11/demo-gguf/resolve/main/demo_model_int8.gguf)
24
+ | demo_model_int16 | For applications that require higher accuracy and can afford more computational resources, the int16 variant offers improved performance without significant memory overhead. | [πŸ“₯](https://huggingface.co/Vuanhngo11/demo-gguf/resolve/main/demo_model_int16.gguf)
25
+ | demo_model_fp16 | For high-performance computing applications where precision is crucial, the fp16 variant provides the best accuracy and is suitable for desktop and server environments. | [πŸ“₯](https://huggingface.co/Vuanhngo11/demo-gguf/resolve/main/demo_model_fp16.gguf)
26
+
27
+ ## 🀝 Contributors
28
+
29
+ Developed with ❀️ by [BlossomAI](https://huggingface.co/BlossomsAI)
30
+
31
+ ---
32
+
33
+ <div align="center">
34
+ <sub>Star ⭐️ this repo if you find it valuable!</sub>
35
+ </div>