Wanfq commited on
Commit
bab6ced
·
1 Parent(s): d4ac96f

First model version

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../../../PLMs/ft_local/LLAMA/hf/llama-7b",
3
+ "architectures": [
4
+ "LLaMAForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_sequence_length": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "pad_token_id": 0,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float16",
20
+ "transformers_version": "4.27.0.dev0",
21
+ "use_cache": true,
22
+ "vocab_size": 32001
23
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.27.0.dev0"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step375
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45f76a5eb2049a4310186988aa8792bf1e7e8ff68f47355d62f9084364c1201e
3
+ size 26953810889
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "</s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "</s>"
6
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "",
3
+ "eos_token": "",
4
+ "model_max_length": 512,
5
+ "padding_side": "right",
6
+ "special_tokens_map_file": "../../../PLMs/ft_local/LLAMA/hf/llama-7b/special_tokens_map.json",
7
+ "tokenizer_class": "LLaMATokenizer",
8
+ "unk_token": ""
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,2275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "global_step": 375,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 0.0,
13
+ "loss": 1.4456,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.02,
18
+ "learning_rate": 5.578858913022597e-06,
19
+ "loss": 1.2331,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.02,
24
+ "learning_rate": 8.842282173954808e-06,
25
+ "loss": 1.2688,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.03,
30
+ "learning_rate": 1.1157717826045193e-05,
31
+ "loss": 1.2466,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.04,
36
+ "learning_rate": 1.295370924755994e-05,
37
+ "loss": 1.2583,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.05,
42
+ "learning_rate": 1.4421141086977404e-05,
43
+ "loss": 1.1955,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.06,
48
+ "learning_rate": 1.5661837028938922e-05,
49
+ "loss": 1.1408,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.06,
54
+ "learning_rate": 1.6736576739067793e-05,
55
+ "loss": 1.2148,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.07,
60
+ "learning_rate": 1.7684564347909616e-05,
61
+ "loss": 1.1095,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.08,
66
+ "learning_rate": 1.853256816058254e-05,
67
+ "loss": 1.2244,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.09,
72
+ "learning_rate": 1.929968091962688e-05,
73
+ "loss": 1.1805,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.1,
78
+ "learning_rate": 2e-05,
79
+ "loss": 1.1408,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.1,
84
+ "learning_rate": 2e-05,
85
+ "loss": 1.2106,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.11,
90
+ "learning_rate": 1.994490358126722e-05,
91
+ "loss": 1.1368,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.12,
96
+ "learning_rate": 1.9889807162534438e-05,
97
+ "loss": 1.1637,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.13,
102
+ "learning_rate": 1.9834710743801656e-05,
103
+ "loss": 1.1587,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.14,
108
+ "learning_rate": 1.977961432506887e-05,
109
+ "loss": 1.1201,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.14,
114
+ "learning_rate": 1.972451790633609e-05,
115
+ "loss": 1.1684,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.15,
120
+ "learning_rate": 1.9669421487603307e-05,
121
+ "loss": 1.1014,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.16,
126
+ "learning_rate": 1.9614325068870526e-05,
127
+ "loss": 1.1248,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.17,
132
+ "learning_rate": 1.9559228650137744e-05,
133
+ "loss": 1.1479,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.18,
138
+ "learning_rate": 1.950413223140496e-05,
139
+ "loss": 1.1321,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.18,
144
+ "learning_rate": 1.944903581267218e-05,
145
+ "loss": 1.1393,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.19,
150
+ "learning_rate": 1.9393939393939395e-05,
151
+ "loss": 1.1275,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.2,
156
+ "learning_rate": 1.9338842975206613e-05,
157
+ "loss": 1.0823,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.21,
162
+ "learning_rate": 1.928374655647383e-05,
163
+ "loss": 1.1044,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.22,
168
+ "learning_rate": 1.922865013774105e-05,
169
+ "loss": 1.122,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.22,
174
+ "learning_rate": 1.9173553719008268e-05,
175
+ "loss": 1.1913,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.23,
180
+ "learning_rate": 1.9118457300275483e-05,
181
+ "loss": 1.1471,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.24,
186
+ "learning_rate": 1.90633608815427e-05,
187
+ "loss": 1.1275,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.25,
192
+ "learning_rate": 1.900826446280992e-05,
193
+ "loss": 1.1164,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.26,
198
+ "learning_rate": 1.8953168044077137e-05,
199
+ "loss": 1.0628,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.26,
204
+ "learning_rate": 1.8898071625344356e-05,
205
+ "loss": 1.0881,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.27,
210
+ "learning_rate": 1.884297520661157e-05,
211
+ "loss": 1.116,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.28,
216
+ "learning_rate": 1.8787878787878792e-05,
217
+ "loss": 1.1315,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.29,
222
+ "learning_rate": 1.8732782369146007e-05,
223
+ "loss": 1.1533,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.3,
228
+ "learning_rate": 1.8677685950413225e-05,
229
+ "loss": 1.1235,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.3,
234
+ "learning_rate": 1.8622589531680443e-05,
235
+ "loss": 1.113,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.31,
240
+ "learning_rate": 1.856749311294766e-05,
241
+ "loss": 1.1017,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.32,
246
+ "learning_rate": 1.851239669421488e-05,
247
+ "loss": 1.0719,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.33,
252
+ "learning_rate": 1.8457300275482094e-05,
253
+ "loss": 1.0921,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.34,
258
+ "learning_rate": 1.8402203856749313e-05,
259
+ "loss": 1.1365,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.34,
264
+ "learning_rate": 1.834710743801653e-05,
265
+ "loss": 1.0933,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.35,
270
+ "learning_rate": 1.829201101928375e-05,
271
+ "loss": 1.1952,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.36,
276
+ "learning_rate": 1.8236914600550967e-05,
277
+ "loss": 1.0772,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.37,
282
+ "learning_rate": 1.8181818181818182e-05,
283
+ "loss": 1.0692,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.38,
288
+ "learning_rate": 1.8126721763085404e-05,
289
+ "loss": 1.0966,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.38,
294
+ "learning_rate": 1.807162534435262e-05,
295
+ "loss": 1.1473,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.39,
300
+ "learning_rate": 1.8016528925619837e-05,
301
+ "loss": 1.063,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.4,
306
+ "learning_rate": 1.796143250688705e-05,
307
+ "loss": 1.0702,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.41,
312
+ "learning_rate": 1.7906336088154273e-05,
313
+ "loss": 1.1028,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.42,
318
+ "learning_rate": 1.7851239669421488e-05,
319
+ "loss": 1.1121,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.42,
324
+ "learning_rate": 1.7796143250688706e-05,
325
+ "loss": 1.0962,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.43,
330
+ "learning_rate": 1.7741046831955924e-05,
331
+ "loss": 1.1432,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.44,
336
+ "learning_rate": 1.7685950413223143e-05,
337
+ "loss": 1.1637,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.45,
342
+ "learning_rate": 1.763085399449036e-05,
343
+ "loss": 1.1187,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.46,
348
+ "learning_rate": 1.7575757575757576e-05,
349
+ "loss": 1.0772,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.46,
354
+ "learning_rate": 1.7520661157024794e-05,
355
+ "loss": 1.1177,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.47,
360
+ "learning_rate": 1.7465564738292012e-05,
361
+ "loss": 1.1503,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.48,
366
+ "learning_rate": 1.741046831955923e-05,
367
+ "loss": 1.135,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.49,
372
+ "learning_rate": 1.735537190082645e-05,
373
+ "loss": 1.0959,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.5,
378
+ "learning_rate": 1.7300275482093663e-05,
379
+ "loss": 1.1231,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.5,
384
+ "learning_rate": 1.7245179063360885e-05,
385
+ "loss": 1.1052,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.51,
390
+ "learning_rate": 1.71900826446281e-05,
391
+ "loss": 1.0436,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.52,
396
+ "learning_rate": 1.7134986225895318e-05,
397
+ "loss": 1.0936,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.53,
402
+ "learning_rate": 1.7079889807162536e-05,
403
+ "loss": 1.1038,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.54,
408
+ "learning_rate": 1.7024793388429754e-05,
409
+ "loss": 1.114,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.54,
414
+ "learning_rate": 1.6969696969696972e-05,
415
+ "loss": 1.0471,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.55,
420
+ "learning_rate": 1.6914600550964187e-05,
421
+ "loss": 1.1193,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.56,
426
+ "learning_rate": 1.6859504132231405e-05,
427
+ "loss": 1.1197,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.57,
432
+ "learning_rate": 1.6804407713498624e-05,
433
+ "loss": 1.0495,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.58,
438
+ "learning_rate": 1.6749311294765842e-05,
439
+ "loss": 1.0766,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.58,
444
+ "learning_rate": 1.669421487603306e-05,
445
+ "loss": 1.0873,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.59,
450
+ "learning_rate": 1.6639118457300275e-05,
451
+ "loss": 1.1187,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.6,
456
+ "learning_rate": 1.6584022038567496e-05,
457
+ "loss": 1.124,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.61,
462
+ "learning_rate": 1.652892561983471e-05,
463
+ "loss": 1.1271,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.62,
468
+ "learning_rate": 1.647382920110193e-05,
469
+ "loss": 1.0794,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.62,
474
+ "learning_rate": 1.6418732782369148e-05,
475
+ "loss": 1.0647,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.63,
480
+ "learning_rate": 1.6363636363636366e-05,
481
+ "loss": 1.155,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.64,
486
+ "learning_rate": 1.6308539944903584e-05,
487
+ "loss": 1.0537,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.65,
492
+ "learning_rate": 1.62534435261708e-05,
493
+ "loss": 1.1242,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.66,
498
+ "learning_rate": 1.6198347107438017e-05,
499
+ "loss": 1.0871,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.66,
504
+ "learning_rate": 1.6143250688705235e-05,
505
+ "loss": 1.0448,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.67,
510
+ "learning_rate": 1.6088154269972454e-05,
511
+ "loss": 1.1028,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.68,
516
+ "learning_rate": 1.6033057851239672e-05,
517
+ "loss": 1.1275,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.69,
522
+ "learning_rate": 1.5977961432506887e-05,
523
+ "loss": 1.1203,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.7,
528
+ "learning_rate": 1.5922865013774108e-05,
529
+ "loss": 1.0619,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.7,
534
+ "learning_rate": 1.5867768595041323e-05,
535
+ "loss": 1.0802,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.71,
540
+ "learning_rate": 1.581267217630854e-05,
541
+ "loss": 1.0682,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.72,
546
+ "learning_rate": 1.575757575757576e-05,
547
+ "loss": 1.1025,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.73,
552
+ "learning_rate": 1.5702479338842978e-05,
553
+ "loss": 1.1141,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.74,
558
+ "learning_rate": 1.5647382920110196e-05,
559
+ "loss": 1.0573,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.74,
564
+ "learning_rate": 1.559228650137741e-05,
565
+ "loss": 1.0682,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.75,
570
+ "learning_rate": 1.553719008264463e-05,
571
+ "loss": 1.1002,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.76,
576
+ "learning_rate": 1.5482093663911847e-05,
577
+ "loss": 1.0758,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.77,
582
+ "learning_rate": 1.5426997245179065e-05,
583
+ "loss": 1.1524,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.78,
588
+ "learning_rate": 1.5371900826446283e-05,
589
+ "loss": 1.0419,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.78,
594
+ "learning_rate": 1.5316804407713498e-05,
595
+ "loss": 1.0896,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.79,
600
+ "learning_rate": 1.526170798898072e-05,
601
+ "loss": 1.0811,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.8,
606
+ "learning_rate": 1.5206611570247936e-05,
607
+ "loss": 1.0717,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.81,
612
+ "learning_rate": 1.5151515151515153e-05,
613
+ "loss": 1.1563,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.82,
618
+ "learning_rate": 1.509641873278237e-05,
619
+ "loss": 1.0853,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.82,
624
+ "learning_rate": 1.504132231404959e-05,
625
+ "loss": 1.1502,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.83,
630
+ "learning_rate": 1.4986225895316806e-05,
631
+ "loss": 1.0551,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.84,
636
+ "learning_rate": 1.4931129476584022e-05,
637
+ "loss": 1.0128,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.85,
642
+ "learning_rate": 1.487603305785124e-05,
643
+ "loss": 1.0855,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.86,
648
+ "learning_rate": 1.4820936639118459e-05,
649
+ "loss": 1.0681,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.86,
654
+ "learning_rate": 1.4765840220385677e-05,
655
+ "loss": 1.0963,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.87,
660
+ "learning_rate": 1.4710743801652893e-05,
661
+ "loss": 1.0618,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.88,
666
+ "learning_rate": 1.465564738292011e-05,
667
+ "loss": 1.1013,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.89,
672
+ "learning_rate": 1.460055096418733e-05,
673
+ "loss": 1.1274,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.9,
678
+ "learning_rate": 1.4545454545454546e-05,
679
+ "loss": 1.0618,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.9,
684
+ "learning_rate": 1.4490358126721765e-05,
685
+ "loss": 1.0953,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.91,
690
+ "learning_rate": 1.4435261707988981e-05,
691
+ "loss": 1.0739,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.92,
696
+ "learning_rate": 1.4380165289256201e-05,
697
+ "loss": 1.1187,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.93,
702
+ "learning_rate": 1.4325068870523417e-05,
703
+ "loss": 1.1022,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.94,
708
+ "learning_rate": 1.4269972451790634e-05,
709
+ "loss": 1.1464,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.94,
714
+ "learning_rate": 1.4214876033057852e-05,
715
+ "loss": 1.0718,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.95,
720
+ "learning_rate": 1.415977961432507e-05,
721
+ "loss": 1.1309,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.96,
726
+ "learning_rate": 1.4104683195592289e-05,
727
+ "loss": 1.124,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.97,
732
+ "learning_rate": 1.4049586776859505e-05,
733
+ "loss": 1.1001,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.98,
738
+ "learning_rate": 1.3994490358126722e-05,
739
+ "loss": 1.0716,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.98,
744
+ "learning_rate": 1.3939393939393942e-05,
745
+ "loss": 1.0403,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.99,
750
+ "learning_rate": 1.3884297520661158e-05,
751
+ "loss": 1.0735,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 1.0,
756
+ "learning_rate": 1.3829201101928376e-05,
757
+ "loss": 1.0446,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 1.01,
762
+ "learning_rate": 1.3774104683195593e-05,
763
+ "loss": 0.8614,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 1.02,
768
+ "learning_rate": 1.3719008264462813e-05,
769
+ "loss": 0.8819,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 1.02,
774
+ "learning_rate": 1.3663911845730029e-05,
775
+ "loss": 0.89,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 1.03,
780
+ "learning_rate": 1.3608815426997246e-05,
781
+ "loss": 0.8193,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 1.04,
786
+ "learning_rate": 1.3553719008264464e-05,
787
+ "loss": 0.8315,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 1.05,
792
+ "learning_rate": 1.3498622589531682e-05,
793
+ "loss": 0.837,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 1.06,
798
+ "learning_rate": 1.34435261707989e-05,
799
+ "loss": 0.8391,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 1.06,
804
+ "learning_rate": 1.3388429752066117e-05,
805
+ "loss": 0.8208,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 1.07,
810
+ "learning_rate": 1.3333333333333333e-05,
811
+ "loss": 0.811,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 1.08,
816
+ "learning_rate": 1.3278236914600553e-05,
817
+ "loss": 0.8744,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 1.09,
822
+ "learning_rate": 1.322314049586777e-05,
823
+ "loss": 0.8584,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 1.1,
828
+ "learning_rate": 1.3168044077134988e-05,
829
+ "loss": 0.8192,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 1.1,
834
+ "learning_rate": 1.3112947658402204e-05,
835
+ "loss": 0.8633,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 1.11,
840
+ "learning_rate": 1.3057851239669424e-05,
841
+ "loss": 0.822,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 1.12,
846
+ "learning_rate": 1.300275482093664e-05,
847
+ "loss": 0.8523,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 1.13,
852
+ "learning_rate": 1.2947658402203857e-05,
853
+ "loss": 0.8124,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 1.14,
858
+ "learning_rate": 1.2892561983471074e-05,
859
+ "loss": 0.8092,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 1.14,
864
+ "learning_rate": 1.2837465564738294e-05,
865
+ "loss": 0.8262,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 1.15,
870
+ "learning_rate": 1.278236914600551e-05,
871
+ "loss": 0.9132,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 1.16,
876
+ "learning_rate": 1.2727272727272728e-05,
877
+ "loss": 0.8919,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 1.17,
882
+ "learning_rate": 1.2672176308539945e-05,
883
+ "loss": 0.8802,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 1.18,
888
+ "learning_rate": 1.2617079889807165e-05,
889
+ "loss": 0.8697,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 1.18,
894
+ "learning_rate": 1.2561983471074381e-05,
895
+ "loss": 0.919,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 1.19,
900
+ "learning_rate": 1.2506887052341598e-05,
901
+ "loss": 0.9084,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 1.2,
906
+ "learning_rate": 1.2451790633608816e-05,
907
+ "loss": 0.8142,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 1.21,
912
+ "learning_rate": 1.2396694214876034e-05,
913
+ "loss": 0.8707,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 1.22,
918
+ "learning_rate": 1.2341597796143253e-05,
919
+ "loss": 0.8036,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 1.22,
924
+ "learning_rate": 1.2286501377410469e-05,
925
+ "loss": 0.8466,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 1.23,
930
+ "learning_rate": 1.2231404958677686e-05,
931
+ "loss": 0.8412,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 1.24,
936
+ "learning_rate": 1.2176308539944905e-05,
937
+ "loss": 0.9156,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 1.25,
942
+ "learning_rate": 1.2121212121212122e-05,
943
+ "loss": 0.8147,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 1.26,
948
+ "learning_rate": 1.206611570247934e-05,
949
+ "loss": 0.9054,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 1.26,
954
+ "learning_rate": 1.2011019283746557e-05,
955
+ "loss": 0.8052,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 1.27,
960
+ "learning_rate": 1.1955922865013777e-05,
961
+ "loss": 0.8557,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 1.28,
966
+ "learning_rate": 1.1900826446280993e-05,
967
+ "loss": 0.8617,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 1.29,
972
+ "learning_rate": 1.184573002754821e-05,
973
+ "loss": 0.8586,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 1.3,
978
+ "learning_rate": 1.1790633608815428e-05,
979
+ "loss": 0.8359,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 1.3,
984
+ "learning_rate": 1.1735537190082646e-05,
985
+ "loss": 0.8864,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 1.31,
990
+ "learning_rate": 1.1680440771349864e-05,
991
+ "loss": 0.8267,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 1.32,
996
+ "learning_rate": 1.162534435261708e-05,
997
+ "loss": 0.8364,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 1.33,
1002
+ "learning_rate": 1.1570247933884297e-05,
1003
+ "loss": 0.8296,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 1.34,
1008
+ "learning_rate": 1.1515151515151517e-05,
1009
+ "loss": 0.8138,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 1.34,
1014
+ "learning_rate": 1.1460055096418734e-05,
1015
+ "loss": 0.8329,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 1.35,
1020
+ "learning_rate": 1.1404958677685952e-05,
1021
+ "loss": 0.8309,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 1.36,
1026
+ "learning_rate": 1.1349862258953168e-05,
1027
+ "loss": 0.8328,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 1.37,
1032
+ "learning_rate": 1.1294765840220388e-05,
1033
+ "loss": 0.8375,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 1.38,
1038
+ "learning_rate": 1.1239669421487605e-05,
1039
+ "loss": 0.8477,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 1.38,
1044
+ "learning_rate": 1.1184573002754821e-05,
1045
+ "loss": 0.8327,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 1.39,
1050
+ "learning_rate": 1.112947658402204e-05,
1051
+ "loss": 0.8157,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 1.4,
1056
+ "learning_rate": 1.1074380165289258e-05,
1057
+ "loss": 0.834,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 1.41,
1062
+ "learning_rate": 1.1019283746556476e-05,
1063
+ "loss": 0.8091,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 1.42,
1068
+ "learning_rate": 1.0964187327823692e-05,
1069
+ "loss": 0.8677,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 1.42,
1074
+ "learning_rate": 1.0909090909090909e-05,
1075
+ "loss": 0.8419,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 1.43,
1080
+ "learning_rate": 1.0853994490358129e-05,
1081
+ "loss": 0.8508,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 1.44,
1086
+ "learning_rate": 1.0798898071625345e-05,
1087
+ "loss": 0.8057,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 1.45,
1092
+ "learning_rate": 1.0743801652892562e-05,
1093
+ "loss": 0.8725,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 1.46,
1098
+ "learning_rate": 1.068870523415978e-05,
1099
+ "loss": 0.8944,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 1.46,
1104
+ "learning_rate": 1.0633608815426998e-05,
1105
+ "loss": 0.799,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 1.47,
1110
+ "learning_rate": 1.0578512396694216e-05,
1111
+ "loss": 0.8201,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 1.48,
1116
+ "learning_rate": 1.0523415977961433e-05,
1117
+ "loss": 0.847,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 1.49,
1122
+ "learning_rate": 1.046831955922865e-05,
1123
+ "loss": 0.8634,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 1.5,
1128
+ "learning_rate": 1.041322314049587e-05,
1129
+ "loss": 0.8602,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 1.5,
1134
+ "learning_rate": 1.0358126721763086e-05,
1135
+ "loss": 0.8378,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 1.51,
1140
+ "learning_rate": 1.0303030303030304e-05,
1141
+ "loss": 0.8241,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 1.52,
1146
+ "learning_rate": 1.024793388429752e-05,
1147
+ "loss": 0.8793,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 1.53,
1152
+ "learning_rate": 1.019283746556474e-05,
1153
+ "loss": 0.934,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 1.54,
1158
+ "learning_rate": 1.0137741046831957e-05,
1159
+ "loss": 0.798,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 1.54,
1164
+ "learning_rate": 1.0082644628099174e-05,
1165
+ "loss": 0.7906,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 1.55,
1170
+ "learning_rate": 1.0027548209366392e-05,
1171
+ "loss": 0.8968,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 1.56,
1176
+ "learning_rate": 9.97245179063361e-06,
1177
+ "loss": 0.9144,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 1.57,
1182
+ "learning_rate": 9.917355371900828e-06,
1183
+ "loss": 0.7989,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 1.58,
1188
+ "learning_rate": 9.862258953168045e-06,
1189
+ "loss": 0.8241,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 1.58,
1194
+ "learning_rate": 9.807162534435263e-06,
1195
+ "loss": 0.8218,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 1.59,
1200
+ "learning_rate": 9.75206611570248e-06,
1201
+ "loss": 0.8479,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 1.6,
1206
+ "learning_rate": 9.696969696969698e-06,
1207
+ "loss": 0.8388,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 1.61,
1212
+ "learning_rate": 9.641873278236916e-06,
1213
+ "loss": 0.88,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 1.62,
1218
+ "learning_rate": 9.586776859504134e-06,
1219
+ "loss": 0.8438,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 1.62,
1224
+ "learning_rate": 9.53168044077135e-06,
1225
+ "loss": 0.8863,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 1.63,
1230
+ "learning_rate": 9.476584022038569e-06,
1231
+ "loss": 0.8427,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 1.64,
1236
+ "learning_rate": 9.421487603305785e-06,
1237
+ "loss": 0.9552,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 1.65,
1242
+ "learning_rate": 9.366391184573003e-06,
1243
+ "loss": 0.7866,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 1.66,
1248
+ "learning_rate": 9.311294765840222e-06,
1249
+ "loss": 0.8672,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 1.66,
1254
+ "learning_rate": 9.25619834710744e-06,
1255
+ "loss": 0.8376,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 1.67,
1260
+ "learning_rate": 9.201101928374656e-06,
1261
+ "loss": 0.8611,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 1.68,
1266
+ "learning_rate": 9.146005509641875e-06,
1267
+ "loss": 0.8543,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 1.69,
1272
+ "learning_rate": 9.090909090909091e-06,
1273
+ "loss": 0.7672,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 1.7,
1278
+ "learning_rate": 9.03581267217631e-06,
1279
+ "loss": 0.8341,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 1.7,
1284
+ "learning_rate": 8.980716253443526e-06,
1285
+ "loss": 0.8354,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 1.71,
1290
+ "learning_rate": 8.925619834710744e-06,
1291
+ "loss": 0.8699,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 1.72,
1296
+ "learning_rate": 8.870523415977962e-06,
1297
+ "loss": 0.8848,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 1.73,
1302
+ "learning_rate": 8.81542699724518e-06,
1303
+ "loss": 0.8109,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 1.74,
1308
+ "learning_rate": 8.760330578512397e-06,
1309
+ "loss": 0.8197,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 1.74,
1314
+ "learning_rate": 8.705234159779615e-06,
1315
+ "loss": 0.8186,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 1.75,
1320
+ "learning_rate": 8.650137741046832e-06,
1321
+ "loss": 0.8382,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 1.76,
1326
+ "learning_rate": 8.59504132231405e-06,
1327
+ "loss": 0.8341,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 1.77,
1332
+ "learning_rate": 8.539944903581268e-06,
1333
+ "loss": 0.8151,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 1.78,
1338
+ "learning_rate": 8.484848484848486e-06,
1339
+ "loss": 0.8597,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 1.78,
1344
+ "learning_rate": 8.429752066115703e-06,
1345
+ "loss": 0.8468,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 1.79,
1350
+ "learning_rate": 8.374655647382921e-06,
1351
+ "loss": 0.8361,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 1.8,
1356
+ "learning_rate": 8.319559228650137e-06,
1357
+ "loss": 0.8236,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 1.81,
1362
+ "learning_rate": 8.264462809917356e-06,
1363
+ "loss": 0.824,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 1.82,
1368
+ "learning_rate": 8.209366391184574e-06,
1369
+ "loss": 0.8553,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 1.82,
1374
+ "learning_rate": 8.154269972451792e-06,
1375
+ "loss": 0.9107,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 1.83,
1380
+ "learning_rate": 8.099173553719009e-06,
1381
+ "loss": 0.828,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 1.84,
1386
+ "learning_rate": 8.044077134986227e-06,
1387
+ "loss": 0.8415,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 1.85,
1392
+ "learning_rate": 7.988980716253443e-06,
1393
+ "loss": 0.8187,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 1.86,
1398
+ "learning_rate": 7.933884297520661e-06,
1399
+ "loss": 0.8463,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 1.86,
1404
+ "learning_rate": 7.87878787878788e-06,
1405
+ "loss": 0.8565,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 1.87,
1410
+ "learning_rate": 7.823691460055098e-06,
1411
+ "loss": 0.8973,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 1.88,
1416
+ "learning_rate": 7.768595041322314e-06,
1417
+ "loss": 0.8126,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 1.89,
1422
+ "learning_rate": 7.713498622589533e-06,
1423
+ "loss": 0.8808,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 1.9,
1428
+ "learning_rate": 7.658402203856749e-06,
1429
+ "loss": 0.8257,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 1.9,
1434
+ "learning_rate": 7.603305785123968e-06,
1435
+ "loss": 0.7625,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 1.91,
1440
+ "learning_rate": 7.548209366391185e-06,
1441
+ "loss": 0.787,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 1.92,
1446
+ "learning_rate": 7.493112947658403e-06,
1447
+ "loss": 0.8942,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 1.93,
1452
+ "learning_rate": 7.43801652892562e-06,
1453
+ "loss": 0.8373,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 1.94,
1458
+ "learning_rate": 7.3829201101928385e-06,
1459
+ "loss": 0.8113,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 1.94,
1464
+ "learning_rate": 7.327823691460055e-06,
1465
+ "loss": 0.8187,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 1.95,
1470
+ "learning_rate": 7.272727272727273e-06,
1471
+ "loss": 0.8349,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 1.96,
1476
+ "learning_rate": 7.2176308539944905e-06,
1477
+ "loss": 0.8702,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 1.97,
1482
+ "learning_rate": 7.162534435261709e-06,
1483
+ "loss": 0.8888,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 1.98,
1488
+ "learning_rate": 7.107438016528926e-06,
1489
+ "loss": 0.8853,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 1.98,
1494
+ "learning_rate": 7.052341597796144e-06,
1495
+ "loss": 0.8767,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 1.99,
1500
+ "learning_rate": 6.997245179063361e-06,
1501
+ "loss": 0.8292,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 2.0,
1506
+ "learning_rate": 6.942148760330579e-06,
1507
+ "loss": 0.8609,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 2.01,
1512
+ "learning_rate": 6.887052341597796e-06,
1513
+ "loss": 0.6381,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 2.02,
1518
+ "learning_rate": 6.8319559228650146e-06,
1519
+ "loss": 0.6476,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 2.02,
1524
+ "learning_rate": 6.776859504132232e-06,
1525
+ "loss": 0.623,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 2.03,
1530
+ "learning_rate": 6.72176308539945e-06,
1531
+ "loss": 0.5721,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 2.04,
1536
+ "learning_rate": 6.666666666666667e-06,
1537
+ "loss": 0.6855,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 2.05,
1542
+ "learning_rate": 6.611570247933885e-06,
1543
+ "loss": 0.6758,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 2.06,
1548
+ "learning_rate": 6.556473829201102e-06,
1549
+ "loss": 0.686,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 2.06,
1554
+ "learning_rate": 6.50137741046832e-06,
1555
+ "loss": 0.605,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 2.07,
1560
+ "learning_rate": 6.446280991735537e-06,
1561
+ "loss": 0.6356,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 2.08,
1566
+ "learning_rate": 6.391184573002755e-06,
1567
+ "loss": 0.6412,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 2.09,
1572
+ "learning_rate": 6.3360881542699725e-06,
1573
+ "loss": 0.5821,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 2.1,
1578
+ "learning_rate": 6.280991735537191e-06,
1579
+ "loss": 0.6579,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 2.1,
1584
+ "learning_rate": 6.225895316804408e-06,
1585
+ "loss": 0.6324,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 2.11,
1590
+ "learning_rate": 6.170798898071626e-06,
1591
+ "loss": 0.6206,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 2.12,
1596
+ "learning_rate": 6.115702479338843e-06,
1597
+ "loss": 0.568,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 2.13,
1602
+ "learning_rate": 6.060606060606061e-06,
1603
+ "loss": 0.6497,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 2.14,
1608
+ "learning_rate": 6.005509641873278e-06,
1609
+ "loss": 0.7128,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 2.14,
1614
+ "learning_rate": 5.9504132231404965e-06,
1615
+ "loss": 0.6326,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 2.15,
1620
+ "learning_rate": 5.895316804407714e-06,
1621
+ "loss": 0.6711,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 2.16,
1626
+ "learning_rate": 5.840220385674932e-06,
1627
+ "loss": 0.6052,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 2.17,
1632
+ "learning_rate": 5.785123966942149e-06,
1633
+ "loss": 0.616,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 2.18,
1638
+ "learning_rate": 5.730027548209367e-06,
1639
+ "loss": 0.6522,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 2.18,
1644
+ "learning_rate": 5.674931129476584e-06,
1645
+ "loss": 0.6183,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 2.19,
1650
+ "learning_rate": 5.619834710743802e-06,
1651
+ "loss": 0.6063,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 2.2,
1656
+ "learning_rate": 5.56473829201102e-06,
1657
+ "loss": 0.6638,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 2.21,
1662
+ "learning_rate": 5.509641873278238e-06,
1663
+ "loss": 0.6629,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 2.22,
1668
+ "learning_rate": 5.4545454545454545e-06,
1669
+ "loss": 0.6219,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 2.22,
1674
+ "learning_rate": 5.399449035812673e-06,
1675
+ "loss": 0.6322,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 2.23,
1680
+ "learning_rate": 5.34435261707989e-06,
1681
+ "loss": 0.6001,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 2.24,
1686
+ "learning_rate": 5.289256198347108e-06,
1687
+ "loss": 0.6135,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 2.25,
1692
+ "learning_rate": 5.234159779614325e-06,
1693
+ "loss": 0.6853,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 2.26,
1698
+ "learning_rate": 5.179063360881543e-06,
1699
+ "loss": 0.6594,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 2.26,
1704
+ "learning_rate": 5.12396694214876e-06,
1705
+ "loss": 0.5779,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 2.27,
1710
+ "learning_rate": 5.0688705234159785e-06,
1711
+ "loss": 0.6122,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 2.28,
1716
+ "learning_rate": 5.013774104683196e-06,
1717
+ "loss": 0.5967,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 2.29,
1722
+ "learning_rate": 4.958677685950414e-06,
1723
+ "loss": 0.634,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 2.3,
1728
+ "learning_rate": 4.903581267217631e-06,
1729
+ "loss": 0.5878,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 2.3,
1734
+ "learning_rate": 4.848484848484849e-06,
1735
+ "loss": 0.6064,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 2.31,
1740
+ "learning_rate": 4.793388429752067e-06,
1741
+ "loss": 0.6401,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 2.32,
1746
+ "learning_rate": 4.738292011019284e-06,
1747
+ "loss": 0.6212,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 2.33,
1752
+ "learning_rate": 4.683195592286502e-06,
1753
+ "loss": 0.675,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 2.34,
1758
+ "learning_rate": 4.62809917355372e-06,
1759
+ "loss": 0.5758,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 2.34,
1764
+ "learning_rate": 4.573002754820937e-06,
1765
+ "loss": 0.6208,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 2.35,
1770
+ "learning_rate": 4.517906336088155e-06,
1771
+ "loss": 0.6623,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 2.36,
1776
+ "learning_rate": 4.462809917355372e-06,
1777
+ "loss": 0.7006,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 2.37,
1782
+ "learning_rate": 4.40771349862259e-06,
1783
+ "loss": 0.6446,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 2.38,
1788
+ "learning_rate": 4.3526170798898075e-06,
1789
+ "loss": 0.595,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 2.38,
1794
+ "learning_rate": 4.297520661157025e-06,
1795
+ "loss": 0.6179,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 2.39,
1800
+ "learning_rate": 4.242424242424243e-06,
1801
+ "loss": 0.6056,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 2.4,
1806
+ "learning_rate": 4.1873278236914605e-06,
1807
+ "loss": 0.6975,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 2.41,
1812
+ "learning_rate": 4.132231404958678e-06,
1813
+ "loss": 0.577,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 2.42,
1818
+ "learning_rate": 4.077134986225896e-06,
1819
+ "loss": 0.6164,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 2.42,
1824
+ "learning_rate": 4.022038567493113e-06,
1825
+ "loss": 0.5844,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 2.43,
1830
+ "learning_rate": 3.966942148760331e-06,
1831
+ "loss": 0.6092,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 2.44,
1836
+ "learning_rate": 3.911845730027549e-06,
1837
+ "loss": 0.6448,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 2.45,
1842
+ "learning_rate": 3.856749311294766e-06,
1843
+ "loss": 0.6078,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 2.46,
1848
+ "learning_rate": 3.801652892561984e-06,
1849
+ "loss": 0.67,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 2.46,
1854
+ "learning_rate": 3.7465564738292014e-06,
1855
+ "loss": 0.6513,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 2.47,
1860
+ "learning_rate": 3.6914600550964192e-06,
1861
+ "loss": 0.6909,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 2.48,
1866
+ "learning_rate": 3.6363636363636366e-06,
1867
+ "loss": 0.6293,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 2.49,
1872
+ "learning_rate": 3.5812672176308544e-06,
1873
+ "loss": 0.5398,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 2.5,
1878
+ "learning_rate": 3.526170798898072e-06,
1879
+ "loss": 0.6252,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 2.5,
1884
+ "learning_rate": 3.4710743801652895e-06,
1885
+ "loss": 0.5939,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 2.51,
1890
+ "learning_rate": 3.4159779614325073e-06,
1891
+ "loss": 0.628,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 2.52,
1896
+ "learning_rate": 3.360881542699725e-06,
1897
+ "loss": 0.5991,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 2.53,
1902
+ "learning_rate": 3.3057851239669424e-06,
1903
+ "loss": 0.6168,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 2.54,
1908
+ "learning_rate": 3.25068870523416e-06,
1909
+ "loss": 0.6345,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 2.54,
1914
+ "learning_rate": 3.1955922865013776e-06,
1915
+ "loss": 0.6272,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 2.55,
1920
+ "learning_rate": 3.1404958677685953e-06,
1921
+ "loss": 0.6319,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 2.56,
1926
+ "learning_rate": 3.085399449035813e-06,
1927
+ "loss": 0.6536,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 2.57,
1932
+ "learning_rate": 3.0303030303030305e-06,
1933
+ "loss": 0.5719,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 2.58,
1938
+ "learning_rate": 2.9752066115702483e-06,
1939
+ "loss": 0.5611,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 2.58,
1944
+ "learning_rate": 2.920110192837466e-06,
1945
+ "loss": 0.6402,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 2.59,
1950
+ "learning_rate": 2.8650137741046834e-06,
1951
+ "loss": 0.6184,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 2.6,
1956
+ "learning_rate": 2.809917355371901e-06,
1957
+ "loss": 0.6345,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 2.61,
1962
+ "learning_rate": 2.754820936639119e-06,
1963
+ "loss": 0.6637,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 2.62,
1968
+ "learning_rate": 2.6997245179063363e-06,
1969
+ "loss": 0.5998,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 2.62,
1974
+ "learning_rate": 2.644628099173554e-06,
1975
+ "loss": 0.5679,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 2.63,
1980
+ "learning_rate": 2.5895316804407715e-06,
1981
+ "loss": 0.6406,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 2.64,
1986
+ "learning_rate": 2.5344352617079892e-06,
1987
+ "loss": 0.633,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 2.65,
1992
+ "learning_rate": 2.479338842975207e-06,
1993
+ "loss": 0.6439,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 2.66,
1998
+ "learning_rate": 2.4242424242424244e-06,
1999
+ "loss": 0.6216,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 2.66,
2004
+ "learning_rate": 2.369146005509642e-06,
2005
+ "loss": 0.6505,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 2.67,
2010
+ "learning_rate": 2.31404958677686e-06,
2011
+ "loss": 0.6455,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 2.68,
2016
+ "learning_rate": 2.2589531680440773e-06,
2017
+ "loss": 0.6273,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 2.69,
2022
+ "learning_rate": 2.203856749311295e-06,
2023
+ "loss": 0.6205,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 2.7,
2028
+ "learning_rate": 2.1487603305785124e-06,
2029
+ "loss": 0.5994,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 2.7,
2034
+ "learning_rate": 2.0936639118457302e-06,
2035
+ "loss": 0.5779,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 2.71,
2040
+ "learning_rate": 2.038567493112948e-06,
2041
+ "loss": 0.6437,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 2.72,
2046
+ "learning_rate": 1.9834710743801654e-06,
2047
+ "loss": 0.6416,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 2.73,
2052
+ "learning_rate": 1.928374655647383e-06,
2053
+ "loss": 0.6012,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 2.74,
2058
+ "learning_rate": 1.8732782369146007e-06,
2059
+ "loss": 0.6741,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 2.74,
2064
+ "learning_rate": 1.8181818181818183e-06,
2065
+ "loss": 0.6456,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 2.75,
2070
+ "learning_rate": 1.763085399449036e-06,
2071
+ "loss": 0.6504,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 2.76,
2076
+ "learning_rate": 1.7079889807162536e-06,
2077
+ "loss": 0.6183,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 2.77,
2082
+ "learning_rate": 1.6528925619834712e-06,
2083
+ "loss": 0.6371,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 2.78,
2088
+ "learning_rate": 1.5977961432506888e-06,
2089
+ "loss": 0.665,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 2.78,
2094
+ "learning_rate": 1.5426997245179066e-06,
2095
+ "loss": 0.6632,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 2.79,
2100
+ "learning_rate": 1.4876033057851241e-06,
2101
+ "loss": 0.6072,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 2.8,
2106
+ "learning_rate": 1.4325068870523417e-06,
2107
+ "loss": 0.6207,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 2.81,
2112
+ "learning_rate": 1.3774104683195595e-06,
2113
+ "loss": 0.5713,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 2.82,
2118
+ "learning_rate": 1.322314049586777e-06,
2119
+ "loss": 0.6021,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 2.82,
2124
+ "learning_rate": 1.2672176308539946e-06,
2125
+ "loss": 0.6223,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 2.83,
2130
+ "learning_rate": 1.2121212121212122e-06,
2131
+ "loss": 0.6316,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 2.84,
2136
+ "learning_rate": 1.15702479338843e-06,
2137
+ "loss": 0.6586,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 2.85,
2142
+ "learning_rate": 1.1019283746556475e-06,
2143
+ "loss": 0.6332,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 2.86,
2148
+ "learning_rate": 1.0468319559228651e-06,
2149
+ "loss": 0.682,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 2.86,
2154
+ "learning_rate": 9.917355371900827e-07,
2155
+ "loss": 0.6285,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 2.87,
2160
+ "learning_rate": 9.366391184573004e-07,
2161
+ "loss": 0.616,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 2.88,
2166
+ "learning_rate": 8.81542699724518e-07,
2167
+ "loss": 0.6497,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 2.89,
2172
+ "learning_rate": 8.264462809917356e-07,
2173
+ "loss": 0.6013,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 2.9,
2178
+ "learning_rate": 7.713498622589533e-07,
2179
+ "loss": 0.6165,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 2.9,
2184
+ "learning_rate": 7.162534435261709e-07,
2185
+ "loss": 0.6757,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 2.91,
2190
+ "learning_rate": 6.611570247933885e-07,
2191
+ "loss": 0.6242,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 2.92,
2196
+ "learning_rate": 6.060606060606061e-07,
2197
+ "loss": 0.6069,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 2.93,
2202
+ "learning_rate": 5.509641873278238e-07,
2203
+ "loss": 0.629,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 2.94,
2208
+ "learning_rate": 4.958677685950413e-07,
2209
+ "loss": 0.6581,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 2.94,
2214
+ "learning_rate": 4.40771349862259e-07,
2215
+ "loss": 0.5775,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 2.95,
2220
+ "learning_rate": 3.8567493112947664e-07,
2221
+ "loss": 0.6631,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 2.96,
2226
+ "learning_rate": 3.3057851239669426e-07,
2227
+ "loss": 0.5838,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 2.97,
2232
+ "learning_rate": 2.754820936639119e-07,
2233
+ "loss": 0.63,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 2.98,
2238
+ "learning_rate": 2.203856749311295e-07,
2239
+ "loss": 0.6276,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 2.98,
2244
+ "learning_rate": 1.6528925619834713e-07,
2245
+ "loss": 0.6565,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 2.99,
2250
+ "learning_rate": 1.1019283746556475e-07,
2251
+ "loss": 0.6356,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 3.0,
2256
+ "learning_rate": 5.509641873278238e-08,
2257
+ "loss": 0.6329,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 3.0,
2262
+ "step": 375,
2263
+ "total_flos": 28638626365440.0,
2264
+ "train_loss": 0.8634774754842123,
2265
+ "train_runtime": 6551.4446,
2266
+ "train_samples_per_second": 7.327,
2267
+ "train_steps_per_second": 0.057
2268
+ }
2269
+ ],
2270
+ "max_steps": 375,
2271
+ "num_train_epochs": 3,
2272
+ "total_flos": 28638626365440.0,
2273
+ "trial_name": null,
2274
+ "trial_params": null
2275
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:794e4c78cfb3077d1c3a5e8aad802d304d1970b083809c1a39083a3bdd3dacff
3
+ size 5051
zero_to_fp32.py ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ '''Copyright The Microsoft DeepSpeed Team'''
3
+
4
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
5
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
6
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
7
+ # application.
8
+ #
9
+ # example: python zero_to_fp32.py . pytorch_model.bin
10
+
11
+ import argparse
12
+ import torch
13
+ import glob
14
+ import math
15
+ import os
16
+ import re
17
+ from collections import OrderedDict
18
+
19
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
20
+ # DeepSpeed data structures it has to be available in the current python environment.
21
+ from deepspeed.utils import logger
22
+ from deepspeed.checkpoint.constants import (DS_VERSION,
23
+ OPTIMIZER_STATE_DICT,
24
+ SINGLE_PARTITION_OF_FP32_GROUPS,
25
+ FP32_FLAT_GROUPS,
26
+ ZERO_STAGE,
27
+ PARTITION_COUNT,
28
+ PARAM_SHAPES,
29
+ BUFFER_NAMES)
30
+
31
+ debug = 0
32
+
33
+ # load to cpu
34
+ device = torch.device('cpu')
35
+
36
+
37
+ def atoi(text):
38
+ return int(text) if text.isdigit() else text
39
+
40
+
41
+ def natural_keys(text):
42
+ '''
43
+ alist.sort(key=natural_keys) sorts in human order
44
+ http://nedbatchelder.com/blog/200712/human_sorting.html
45
+ (See Toothy's implementation in the comments)
46
+ '''
47
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
48
+
49
+
50
+ def get_model_state_file(checkpoint_dir, zero_stage):
51
+ if not os.path.isdir(checkpoint_dir):
52
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
53
+
54
+ # there should be only one file
55
+ if zero_stage == 2:
56
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
57
+ elif zero_stage == 3:
58
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
59
+
60
+ if not os.path.exists(file):
61
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
62
+
63
+ return file
64
+
65
+
66
+ def get_optim_files(checkpoint_dir):
67
+ # XXX: need to test that this simple glob rule works for multi-node setup too
68
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
69
+ "*_optim_states.pt")),
70
+ key=natural_keys)
71
+
72
+ if len(optim_files) == 0:
73
+ raise FileNotFoundError(
74
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
75
+
76
+ return optim_files
77
+
78
+
79
+ def parse_model_state(file):
80
+ state_dict = torch.load(file, map_location=device)
81
+
82
+ if BUFFER_NAMES not in state_dict:
83
+ raise ValueError(f"{file} is not a model state checkpoint")
84
+ buffer_names = state_dict[BUFFER_NAMES]
85
+ if debug:
86
+ print("Found buffers:", buffer_names)
87
+
88
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
89
+ buffers = {
90
+ k: v.float()
91
+ for k,
92
+ v in state_dict["module"].items() if k in buffer_names
93
+ }
94
+ param_shapes = state_dict[PARAM_SHAPES]
95
+
96
+ ds_version = state_dict.get(DS_VERSION, None)
97
+
98
+ return buffers, param_shapes, ds_version
99
+
100
+
101
+ def parse_optim_states(files, ds_checkpoint_dir):
102
+
103
+ total_files = len(files)
104
+ state_dicts = []
105
+ for f in files:
106
+ state_dicts.append(torch.load(f, map_location=device))
107
+
108
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
109
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
110
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
111
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
112
+
113
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
114
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
115
+ # use the max of the partition_count to get the dp world_size.
116
+
117
+ if type(world_size) is list:
118
+ world_size = max(world_size)
119
+
120
+ if world_size != total_files:
121
+ raise ValueError(
122
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
123
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
124
+ )
125
+
126
+ # the groups are named differently in each stage
127
+ if zero_stage == 2:
128
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
129
+ elif zero_stage == 3:
130
+ fp32_groups_key = FP32_FLAT_GROUPS
131
+ else:
132
+ raise ValueError(f"unknown zero stage {zero_stage}")
133
+
134
+ if zero_stage == 2:
135
+ fp32_flat_groups = [
136
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
137
+ for i in range(len(state_dicts))
138
+ ]
139
+ elif zero_stage == 3:
140
+ # if there is more than one param group, there will be multiple flattened tensors - one
141
+ # flattened tensor per group - for simplicity merge them into a single tensor
142
+ #
143
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
144
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
145
+
146
+ fp32_flat_groups = [
147
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
148
+ 0) for i in range(len(state_dicts))
149
+ ]
150
+
151
+ return zero_stage, world_size, fp32_flat_groups
152
+
153
+
154
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
155
+ """
156
+ Returns fp32 state_dict reconstructed from ds checkpoint
157
+
158
+ Args:
159
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
160
+
161
+ """
162
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
163
+
164
+ optim_files = get_optim_files(ds_checkpoint_dir)
165
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
166
+ print(
167
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
168
+
169
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
170
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
171
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
172
+
173
+ if zero_stage == 2:
174
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
175
+ param_shapes,
176
+ fp32_flat_groups,
177
+ buffers)
178
+ elif zero_stage == 3:
179
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
180
+ param_shapes,
181
+ fp32_flat_groups,
182
+ buffers)
183
+
184
+
185
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
186
+ param_shapes,
187
+ fp32_flat_groups,
188
+ buffers):
189
+
190
+ # Reconstruction protocol:
191
+ #
192
+ # XXX: document this
193
+
194
+ if debug:
195
+ for i in range(world_size):
196
+ for j in range(len(fp32_flat_groups[0])):
197
+ print(
198
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
199
+
200
+ # XXX: memory usage doubles here (zero2)
201
+ num_param_groups = len(fp32_flat_groups[0])
202
+ merged_single_partition_of_fp32_groups = []
203
+ for i in range(num_param_groups):
204
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
205
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
206
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
207
+ avail_numel = sum([
208
+ full_single_fp32_vector.numel()
209
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
210
+ ])
211
+
212
+ if debug:
213
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
214
+ wanted_numel = sum(
215
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
216
+ # not asserting if there is a mismatch due to possible padding
217
+ print(f"Have {avail_numel} numels to process.")
218
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
219
+
220
+ state_dict = OrderedDict()
221
+
222
+ # buffers
223
+ state_dict.update(buffers)
224
+ if debug:
225
+ print(f"added {len(buffers)} buffers")
226
+
227
+ # params
228
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
229
+ # out-of-core computing solution
230
+ total_numel = 0
231
+ total_params = 0
232
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
233
+ offset = 0
234
+ avail_numel = full_single_fp32_vector.numel()
235
+ for name, shape in shapes.items():
236
+
237
+ unpartitioned_numel = shape.numel()
238
+ total_numel += unpartitioned_numel
239
+ total_params += 1
240
+
241
+ if debug:
242
+ print(
243
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
244
+ )
245
+ state_dict[name] = full_single_fp32_vector.narrow(
246
+ 0,
247
+ offset,
248
+ unpartitioned_numel).view(shape)
249
+ offset += unpartitioned_numel
250
+
251
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
252
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
253
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
254
+ # live optimizer object, so we are checking that the numbers are within the right range
255
+ align_to = 2 * world_size
256
+
257
+ def zero2_align(x):
258
+ return align_to * math.ceil(x / align_to)
259
+
260
+ if debug:
261
+ print(f"original offset={offset}, avail_numel={avail_numel}")
262
+
263
+ offset = zero2_align(offset)
264
+ avail_numel = zero2_align(avail_numel)
265
+
266
+ if debug:
267
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
268
+
269
+ # Sanity check
270
+ if offset != avail_numel:
271
+ raise ValueError(
272
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
273
+
274
+ print(
275
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
276
+ )
277
+
278
+ return state_dict
279
+
280
+
281
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
282
+ remainder = unpartitioned_numel % world_size
283
+ padding_numel = (world_size - remainder) if remainder else 0
284
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
285
+ return partitioned_numel, padding_numel
286
+
287
+
288
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
289
+ param_shapes,
290
+ fp32_flat_groups,
291
+ buffers):
292
+
293
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
294
+ # param, re-consolidating each param, while dealing with padding if any
295
+
296
+ avail_numel = fp32_flat_groups[0].numel() * world_size
297
+ # merge list of dicts, preserving order
298
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
299
+
300
+ if debug:
301
+ for i in range(world_size):
302
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
303
+
304
+ wanted_params = len(param_shapes)
305
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
306
+ # not asserting if there is a mismatch due to possible padding
307
+ print(f"Have {avail_numel} numels to process.")
308
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
309
+
310
+ state_dict = OrderedDict()
311
+
312
+ # buffers
313
+ state_dict.update(buffers)
314
+ if debug:
315
+ print(f"added {len(buffers)} buffers")
316
+
317
+ # params
318
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
319
+ # out-of-core computing solution
320
+ offset = 0
321
+ total_numel = 0
322
+ total_params = 0
323
+ for name, shape in param_shapes.items():
324
+
325
+ unpartitioned_numel = shape.numel()
326
+ total_numel += unpartitioned_numel
327
+ total_params += 1
328
+
329
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
330
+
331
+ if debug:
332
+ print(
333
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
334
+ )
335
+
336
+ # XXX: memory usage doubles here
337
+ state_dict[name] = torch.cat(
338
+ tuple(fp32_flat_groups[i].narrow(0,
339
+ offset,
340
+ partitioned_numel)
341
+ for i in range(world_size)),
342
+ 0).narrow(0,
343
+ 0,
344
+ unpartitioned_numel).view(shape)
345
+ offset += partitioned_numel
346
+
347
+ offset *= world_size
348
+
349
+ # Sanity check
350
+ if offset != avail_numel:
351
+ raise ValueError(
352
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
353
+
354
+ print(
355
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
356
+ )
357
+
358
+ return state_dict
359
+
360
+
361
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
362
+ """
363
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
364
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
365
+ via a model hub.
366
+
367
+ Args:
368
+ - ``checkpoint_dir``: path to the desired checkpoint folder
369
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
370
+
371
+ Returns:
372
+ - pytorch ``state_dict``
373
+
374
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
375
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
376
+ the checkpoint.
377
+
378
+ A typical usage might be ::
379
+
380
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
381
+ # do the training and checkpoint saving
382
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
383
+ model = model.cpu() # move to cpu
384
+ model.load_state_dict(state_dict)
385
+ # submit to model hub or save the model to share with others
386
+
387
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
388
+ application. i.e. you will need to re-initialize the deepspeed engine, since
389
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
390
+
391
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
392
+
393
+ """
394
+ if tag is None:
395
+ latest_path = os.path.join(checkpoint_dir, 'latest')
396
+ if os.path.isfile(latest_path):
397
+ with open(latest_path, 'r') as fd:
398
+ tag = fd.read().strip()
399
+ else:
400
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
401
+
402
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
403
+
404
+ if not os.path.isdir(ds_checkpoint_dir):
405
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
406
+
407
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
408
+
409
+
410
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
411
+ """
412
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
413
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
414
+
415
+ Args:
416
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
417
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
418
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
419
+ """
420
+
421
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
422
+ print(f"Saving fp32 state dict to {output_file}")
423
+ torch.save(state_dict, output_file)
424
+
425
+
426
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
427
+ """
428
+ 1. Put the provided model to cpu
429
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
430
+ 3. Load it into the provided model
431
+
432
+ Args:
433
+ - ``model``: the model object to update
434
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
435
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
436
+
437
+ Returns:
438
+ - ``model`: modified model
439
+
440
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
441
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
442
+ conveniently placed for you in the checkpoint folder.
443
+
444
+ A typical usage might be ::
445
+
446
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
447
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
448
+ # submit to model hub or save the model to share with others
449
+
450
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
451
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
452
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
453
+
454
+ """
455
+ logger.info(f"Extracting fp32 weights")
456
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
457
+
458
+ logger.info(f"Overwriting model with fp32 weights")
459
+ model = model.cpu()
460
+ model.load_state_dict(state_dict, strict=False)
461
+
462
+ return model
463
+
464
+
465
+ if __name__ == "__main__":
466
+
467
+ parser = argparse.ArgumentParser()
468
+ parser.add_argument(
469
+ "checkpoint_dir",
470
+ type=str,
471
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
472
+ parser.add_argument(
473
+ "output_file",
474
+ type=str,
475
+ help=
476
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
477
+ )
478
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
479
+ args = parser.parse_args()
480
+
481
+ debug = args.debug
482
+
483
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)