--- license: mit datasets: - WangBiao/R1-Track-5k base_model: - Qwen/Qwen2.5-VL-3B-Instruct --- # Demo ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "WangBiao/R1-Track-GRPO-wo-Think", torch_dtype="auto", device_map="auto" ) min_pixels = 336*336 max_pixels = 336*336 processor = AutoProcessor.from_pretrained("WangBiao/R1-Track-GRPO-wo-Think", min_pixels=min_pixels, max_pixels=max_pixels) messages = [ { "role": "system", "content": "You are a helpful assistant.", }, { "role": "user", "content": [ { "type": "image", "image": "image_1.jpg", }, { "type": "image", "image": "image_2.jpg", }, {"type": "text", "text": "Please identify the target specified by the bounding box [241,66,329,154] in the first image and locate it in the second image. Return the coordinates in [x_min,y_min,x_max,y_max] format."}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ```