Woondsc commited on
Commit
ec3c8f7
·
verified ·
1 Parent(s): f3ecef4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - ko
5
+ - en
6
+ base_model:
7
+ - facebook/nllb-200-1.3B
8
+ pipeline_tag: translation
9
+ library_name: transformers
10
+ tags:
11
+ - pytorch
12
+ - flores-200
13
+ - Medical
14
+ ---
15
+
16
+ * Explanation !
17
+
18
+ - This model is a fine-tuned version of the NLLB-200-1.3B model, specifically adapted for the medical terminology domain. All usage guidelines and copyright policies comply with those of the base model.
19
+
20
+ - The fine-tuning dataset consists of the KMA Medical Terminology Collection and the KCD-8 masterfile's Korean-English description dataset.
21
+
22
+ - It is specialized for translating Korean medical terms into English. ( ! Especially fitted for translating cause-of-death Korean text into English terms ! )
23
+
24
+ - After pushing the model, we have continuously identified mistranslations and are updating the # Woondsc/nllb-1.3B-KMA-KCD-FFTtest (this model !)# model to address these issues. This model is an improved fine-tuned version specifically designed to correct additional mistranslations in the original model.
25
+
26
+ - If you are looking to build a general Korean-to-English translation model for other purposes, feel free to use # Woondsc/nllb-1.3B-KMA-KCD # model. However, if you need better performance for Korean-to-English medical translations, we recommend using # Woondsc/nllb-1.3B-KMA-KCD-FFTtest (this model !)# instead.
27
+
28
+
29
+
30
+
31
+ # Here is the example of using this model for translating Korean COD into English term . . .
32
+
33
+ ```python
34
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
35
+
36
+ # Load model directly
37
+ tokenizer = AutoTokenizer.from_pretrained("Woondsc/nllb-1.3B-KMA-KCD-FFTtest")
38
+ model = AutoModelForSeq2SeqLM.from_pretrained("Woondsc/nllb-1.3B-KMA-KCD-FFTtest")
39
+
40
+ # Transformer function setting
41
+ def translate(text, model, tokenizer, target_lang="eng_Latn"):
42
+ inputs = tokenizer(text, return_tensors="pt")
43
+ inputs["forced_bos_token_id"] = tokenizer.convert_tokens_to_ids(target_lang)
44
+ translated_tokens = model.generate(**inputs)
45
+ translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
46
+ return translated_text
47
+
48
+ # Execute example
49
+ korean_text = "간질"
50
+ english_translation = translate(korean_text, model, tokenizer)
51
+ print("번역 결과:", english_translation)
52
+ ```