bwshen-mi commited on
Commit
da3d5c4
·
verified ·
1 Parent(s): 2295e30

init Xiaomi-MiMo

Browse files
README.md ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ <div align="center">
6
+ <picture>
7
+ <source srcset="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/Xiaomi_MiMo_darkmode.png?raw=true" media="(prefers-color-scheme: dark)">
8
+ <img src="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/Xiaomi_MiMo.png?raw=true" width="60%" alt="Xiaomi-MiMo" />
9
+ </picture>
10
+ </div>
11
+
12
+ <h3 align="center">
13
+ <b>
14
+ <span>━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━</span>
15
+ <br/>
16
+ Unlocking the Reasoning Potential of Language Model<br/>From Pretraining to Posttraining
17
+ <br/>
18
+ <span>━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━</span>
19
+ <br/>
20
+ </b>
21
+ </h3>
22
+
23
+ <br/>
24
+
25
+ <div align="center" style="line-height: 1;">
26
+ |
27
+ <a href="https://huggingface.co/XiaomiMiMo" target="_blank">🤗 HuggingFace</a>
28
+ &nbsp;|
29
+ <a href="https://github.com/XiaomiMiMo/MiMo/report.pdf?raw=true" target="_blank">📔 Technical Report</a>
30
+ &nbsp;|
31
+ <br/>
32
+ </div>
33
+
34
+ <br/>
35
+
36
+ > This model repository is licensed under the MIT License.
37
+
38
+ ## I. Introduction
39
+
40
+ Currently, most successful RL works, including open-source research, rely on relatively large base models, e.g., 32B models, particularly for enhancing code reasoning capabilities. Moreover, it was widely considered that achieving uniform and simultaneous improvements in both mathematical and code capabilities within a small model is challenging. Nonetheless, we believe that the effectiveness of the RL trained reasoning model relies on the inherent reasoning potential of the base model. To fully unlock the reasoning potential of language models, efforts must focus not only on post-training but also on pre-training strategies tailored to reasoning.
41
+
42
+ In this work, we present MiMo-7B, a series of models trained from scratch and born for reasoning tasks. Our RL experiments from MiMo-7B-Base show that our model possesses extraordinary reasoning potential, even surpassing much larger 32B models. Additionally, we perform RL training on a cold-started SFT model, resulting in MiMo-7B-RL, which demonstrates superior performance on both mathematics and code reasoning tasks, matching the performance of OpenAI o1-mini.
43
+
44
+ <p align="center">
45
+ <img width="80%" src="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/curve.png?raw=true">
46
+ </p>
47
+
48
+ We open-source MiMo-7B series, including checkpoints of the base model, SFT model, RL model trained from base model, and RL model trained from the SFT model.
49
+ We believe this report along with the models will provides valuable insights to develop powerful reasoning LLM that benefit the larger community.
50
+
51
+ ### 🌟 Highlights
52
+
53
+ - **Pre-Training: Base Model Born for Reasoning**
54
+ - We optimize data preprocessing pipeline, enhancing text extraction toolkits and applying multi-dimensional data filtering to increase reasoning pattern density in pre-training data. We also employ multiple strategies to generate massive diverse synthetic reasoning data.
55
+ - We adopt a three-stage data mixture strategy for pre-training. Overall, MiMo-7B-Base is pre-trained on approximately 25 trillion tokens.
56
+ - We incorporate Multiple-Token Prediction as an additional training objective, which enhances model performance and accelerates inference.
57
+
58
+ - **Post-Training Recipe: Pioneering Reasoning Model**
59
+ - We curate 130K mathematics and code problems as RL training data, which can be verified by rule-based verifiers. Each problem undergoes careful cleaning and difficulty assessment to ensure quality. We employ only rule-based accuracy rewards to avoid potential reward hacking.
60
+ - To mitigate the sparse reward issue for challenging code problems, we introduce a test difficulty driven code reward. By assigning fine-grained scores for test cases with varying difficulty levels, the policy can be more effectively optimized via dense reward signal.
61
+ - We implement a data re-sampling strategy for easy problems to enhance rollout sampling efficiency and stabilize policy updates, particularly in the later phases of RL training.
62
+
63
+ - **RL Infrastructures**
64
+ - We develop a Seamless Rollout Engine to accelerate RL training and validation. Our design integrates continuous rollout, asynchronous reward computation, and early termination to minimize GPU idle time, achieving 2.29$\times$ faster training and 1.96$\times$ faster validation.
65
+ - We support MTP in vLLM and enhance the robustness of the inference engine in RL system.
66
+
67
+
68
+ ## II. Model Details
69
+
70
+ > Models are avaliable at [https://huggingface.co/XiaomiMiMo](https://huggingface.co/XiaomiMiMo)
71
+
72
+ | **Model** | **Description** | **Download** |
73
+ | :--------------: | :---------------------------------------------------------------------------: | :-------------------------------------------------------------------------------: |
74
+ | **MiMo-7B-Base** | Base model with extraordinary reasoning potential | [🤗 XiaomiMiMo/MiMo-7B-Base](https://huggingface.co/XiaomiMiMo/MiMo-7B-Base) |
75
+ | MiMo-7B-RL-Zero | RL model trained from base model | [🤗 XiaomiMiMo/MiMo-7B-RL-Zero](https://huggingface.co/XiaomiMiMo/MiMo-7B-RL-Zero) |
76
+ | MiMo-7B-SFT | SFT model trained from base model | [🤗 XiaomiMiMo/MiMo-7B-SFT](https://huggingface.co/XiaomiMiMo/MiMo-7B-SFT) |
77
+ | MiMo-7B-RL | RL model trained from SFT model, superior performance matching OpenAI o1-mini | [🤗 XiaomiMiMo/MiMo-7B-RL](https://huggingface.co/XiaomiMiMo/MiMo-7B-RL) |
78
+
79
+ ## III. Evaluation Results
80
+
81
+ | Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet-1022 | OpenAI o1-mini | QwQ-32B-Preview | R1-Distill-Qwen-14B | R1-Distill-Qwen-7B | **MiMo-7B-RL** |
82
+ | ----------------------------- | :---------: | :--------------------: | :------------: | :-------------: | :-----------------: | :----------------: | :------------: |
83
+ | **General** | | | | | | | |
84
+ | GPQA Diamond<br/>(Pass@1) | 49.9 | 65.0 | 60.0 | 54.5 | 59.1 | 49.1 | 54.4 |
85
+ | SuperGPQA<br/>(Pass@1) | 42.4 | 48.2 | 45.2 | 43.6 | 40.6 | 28.9 | 40.5 |
86
+ | DROP<br/>(3-shot F1) | 83.7 | 88.3 | 83.9 | 71.2 | 85.5 | 77.0 | 78.7 |
87
+ | MMLU-Pro<br/>(EM) | 72.6 | 78.0 | 80.3 | 52.0 | 68.8 | 53.5 | 58.6 |
88
+ | IF-Eval<br/>(Prompt Strict) | 84.3 | 86.5 | 84.8 | 40.4 | 78.3 | 60.5 | 61.0 |
89
+ | **Mathematics** | | | | | | | |
90
+ | MATH-500<br/>(Pass@1) | 74.6 | 78.3 | 90.0 | 90.6 | 93.9 | 92.8 | 95.8 |
91
+ | AIME 2024<br/>(Pass@1) | 9.3 | 16.0 | 63.6 | 50.0 | 69.7 | 55.5 | 68.2 |
92
+ | AIME 2025<br/>(Pass@1) | 11.6 | 7.4 | 50.7 | 32.4 | 48.2 | 38.8 | 55.4 |
93
+ | **Code** | | | | | | | |
94
+ | LiveCodeBench v5<br/>(Pass@1) | 32.9 | 38.9 | 53.8 | 41.9 | 53.1 | 37.6 | 57.8 |
95
+ | LiveCodeBench v6<br/>(Pass@1) | 30.9 | - | 46.8 | 39.1 | 31.9 | 23.9 | 49.3 |
96
+
97
+ MiMo-7B series
98
+
99
+ | Benchmark | **MiMo-7B-Base** | MiMo-7B-RL-Zero | MiMo-7B-SFT | MiMo-7B-RL |
100
+ | ----------------------------- | :--------------: | :-------------: | :---------: | :--------: |
101
+ | **Mathematics** | | | | |
102
+ | MATH500<br/>(Pass@1) | 37.4 | 93.6 | 93.0 | 95.8 |
103
+ | AIME 2024<br/>(Pass@1) | 32.9 | 56.4 | 58.7 | 68.2 |
104
+ | AIME 2025<br/>(Pass@1) | 24.3 | 46.3 | 44.3 | 55.4 |
105
+ | **Code** | | | | |
106
+ | LiveCodeBench v5<br/>(Pass@1) | 32.9 | 49.1 | 52.3 | 57.8 |
107
+ | LiveCodeBench v6<br/>(Pass@1) | 29.1 | 42.9 | 45.5 | 49.3 |
108
+
109
+ > [!IMPORTANT]
110
+ > The evaluation are conducted with `temperature=0.6`.
111
+ >
112
+ > AIME24 and AIME25 are with averaged score of 32 repetitions. LiveCodeBench v5 (20240801-20250201), LiveCodeBench v6 (20250201-20250501), GPQA-Diamond and IF-Eval are with averaged score of 8 repetitions. MATH500 and SuperGPQA are with a single run.
113
+
114
+ ## IV. Deployment
115
+
116
+ ### vLLM inference
117
+
118
+ 1. [Recommended] We official support inference with MiMo-MTP using [our fork of vLLM](https://github.com/XiaomiMiMo/vllm/tree/feat_mimo_mtp).
119
+
120
+ Example script
121
+
122
+ ```py
123
+ from vllm import LLM, SamplingParams
124
+
125
+ model_path = "/path/to/MiMo"
126
+ llm = LLM(
127
+ model=model_path,
128
+ trust_remote_code=True,
129
+ num_speculative_tokens=1,
130
+ disable_log_stats=False
131
+ )
132
+ sampling_params = SamplingParams(temperature=0.6)
133
+
134
+ conversation = [
135
+ {
136
+ "role": "system",
137
+ "content": ""
138
+ },
139
+ {
140
+ "role": "user",
141
+ "content": "Write an essay about the importance of higher education.",
142
+ },
143
+ ]
144
+
145
+ outputs = llm.chat(conversation,
146
+ sampling_params=sampling_params,
147
+ use_tqdm=False)
148
+
149
+ for output in outputs:
150
+ prompt = output.prompt
151
+ generated_text = output.outputs[0].text
152
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
153
+
154
+ print("=" * 80)
155
+ ```
156
+
157
+ 2. Or, you can register a vLLM loader for MiMo without loading MTP parameters.
158
+
159
+ You can copy the [`registry/register_mimo_in_vllm.py`](https://github.com/XiaomiMiMo/MiMo/blob/main/registry/register_mimo_in_vllm.py) to your directory and import it with
160
+
161
+ ```py
162
+ import register_mimo_in_vllm
163
+
164
+ from vllm import LLM, SamplingParams
165
+
166
+ model_path = "/path/to/MiMo"
167
+ llm = LLM(
168
+ model=model_path,
169
+ trust_remote_code=True,
170
+ # num_speculative_tokens=1,
171
+ disable_log_stats=False
172
+ )
173
+ sampling_params = SamplingParams(temperature=0.6)
174
+ ```
175
+
176
+ ### HuggingFace inference
177
+
178
+ Example script
179
+
180
+ ```py
181
+ from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
182
+
183
+ model_path = "/path/to/MiMo"
184
+ model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
185
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
186
+ inputs = tokenizer(["Today is"], return_tensors='pt')
187
+ output = model.generate(**inputs, max_new_tokens = 100)
188
+ print(tokenizer.decode(output.tolist()[0]))
189
+ ```
190
+
191
+ ### Recommended environment and prompts
192
+
193
+ - We recommend using [our fork of vLLM](https://github.com/XiaomiMiMo/vllm/tree/feat_mimo_mtp) which is developed based on vLLM 0.7.3.
194
+ - We recommend using empty system prompt.
195
+
196
+ > We haven't verified MiMo with other inference engines and welcome contributions based on the model definition in the Huggingface repo 💻.
197
+
198
+ ## V. Citation
199
+
200
+ ```bibtex
201
+ @misc{xiaomi2025mimo,
202
+ title={MiMo: Unlocking the Reasoning Potential of Language Model – From Pretraining to Posttraining},
203
+ author={{Xiaomi LLM-Core Team}},
204
+ year={2025},
205
+ primaryClass={cs.CL},
206
+ url={https://github.com/XiaomiMiMo/MiMo},
207
+ }
208
+ ```
209
+
210
+
211
+ ## VI. Contact
212
+
213
+ Please contact us at [[email protected]](mailto:[email protected]) or open an issue if you have any questions.
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MiMoForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_mimo.MiMoConfig",
7
+ "AutoModel": "modeling_mimo.MiMoModel",
8
+ "AutoModelForCausalLM": "modeling_mimo.MiMoForCausalLM"
9
+ },
10
+ "attention_dropout": 0.0,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 11008,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 32,
17
+ "model_type": "mimo",
18
+ "num_attention_heads": 32,
19
+ "head_dim": 128,
20
+ "num_hidden_layers": 36,
21
+ "num_key_value_heads": 8,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_theta": 640000,
24
+ "sliding_window": 32768,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.40.1",
28
+ "use_cache": true,
29
+ "use_mrope": false,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 151680,
32
+ "attention_bias": true,
33
+ "num_nextn_predict_layers": 1
34
+ }
configuration_mimo.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
2
+
3
+ class MiMoConfig(Qwen2Config):
4
+ model_type = "mimo"
5
+
6
+ def __init__(
7
+ self,
8
+ *args,
9
+ num_nextn_predict_layers=0,
10
+ **kwargs
11
+ ):
12
+ self.num_nextn_predict_layers = num_nextn_predict_layers
13
+ super().__init__(
14
+ *args,
15
+ **kwargs,
16
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": false,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.37.0"
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0148f29e77ac8cd704fd94eba005fab1ebafc0216e3c2036e4f128fe0da0fc7
3
+ size 3987958288
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9c1fcaf348b456044a688b64533f14394f26e2f25c16d8ed34e1e5bae88c63d
3
+ size 3989130384
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25778c9317cb62efcf3af67746048a1e9761fd37ce848f3e939420180007c366
3
+ size 3982835320
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a11f085bc7d38c1a4913e03fcbb49b6e6e0165b3c38c2c65bd3ef38ecbbbfcc0
3
+ size 3706946944
model.safetensors.index.json ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15666819072
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
440
+ "model.mtp_layers.0.final_layernorm.weight": "model-00004-of-00004.safetensors",
441
+ "model.mtp_layers.0.hidden_layernorm.weight": "model-00004-of-00004.safetensors",
442
+ "model.mtp_layers.0.input_layernorm.weight": "model-00004-of-00004.safetensors",
443
+ "model.mtp_layers.0.input_proj.weight": "model-00004-of-00004.safetensors",
444
+ "model.mtp_layers.0.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
445
+ "model.mtp_layers.0.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
446
+ "model.mtp_layers.0.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
447
+ "model.mtp_layers.0.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
448
+ "model.mtp_layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
449
+ "model.mtp_layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
450
+ "model.mtp_layers.0.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
451
+ "model.mtp_layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
452
+ "model.mtp_layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
453
+ "model.mtp_layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
454
+ "model.mtp_layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
455
+ "model.mtp_layers.0.token_layernorm.weight": "model-00004-of-00004.safetensors",
456
+ "model.norm.weight": "model-00004-of-00004.safetensors"
457
+ }
458
+ }
modeling_mimo.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple
2
+
3
+ import torch
4
+ from torch import nn
5
+ from transformers.cache_utils import Cache
6
+ from transformers.models.qwen2.modeling_qwen2 import (Qwen2Attention,
7
+ Qwen2ForCausalLM,
8
+ Qwen2MLP, Qwen2Model,
9
+ Qwen2RMSNorm)
10
+
11
+ from .configuration_mimo import MiMoConfig
12
+
13
+
14
+ class MiMoMTPLayers(nn.Module):
15
+ def __init__(self, config):
16
+ super().__init__()
17
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
18
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
19
+ self.token_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
20
+ self.hidden_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
21
+ self.input_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
22
+ self.final_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
23
+ self.self_attn = Qwen2Attention(config, layer_idx=0)
24
+ self.mlp = Qwen2MLP(config)
25
+
26
+ def forward(self, input_embeds,
27
+ hidden_states,
28
+ attention_mask,
29
+ position_ids,
30
+ past_key_values: Optional[Cache]=None,
31
+ output_attentions: Optional[bool]=False,
32
+ use_cache: Optional[bool]=False,
33
+ position_embedding: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
34
+ cache_position=None,
35
+ **kwargs):
36
+ input_embeds = self.token_layernorm(input_embeds)
37
+ previous_hidden_states = self.hidden_layernorm(hidden_states)
38
+ hidden_states = self.input_proj(torch.cat([previous_hidden_states, input_embeds], dim=-1))
39
+ residual = hidden_states
40
+ hidden_states = self.input_layernorm(hidden_states)
41
+ hidden_states, _ = self.self_attn(hidden_states,
42
+ attention_mask=attention_mask,
43
+ position_ids=position_ids,
44
+ past_key_values=past_key_values,
45
+ output_attentions=output_attentions,
46
+ use_cache=use_cache,
47
+ cache_position=cache_position,
48
+ position_embedding=position_embedding,
49
+ **kwargs)
50
+ hidden_states = residual + hidden_states
51
+ residual = hidden_states
52
+ hidden_states = self.post_attention_layernorm(hidden_states)
53
+ hidden_states = self.mlp(hidden_states)
54
+ hidden_states = residual + hidden_states
55
+ hidden_states = self.final_layernorm(hidden_states)
56
+ return hidden_states
57
+
58
+
59
+ class MiMoModel(Qwen2Model):
60
+ config_class = MiMoConfig
61
+
62
+ def __init__(self, config: MiMoConfig):
63
+ super().__init__(config)
64
+ self.mtp_layers = nn.ModuleList([MiMoMTPLayers(config) for _ in range(config.num_nextn_predict_layers)])
65
+
66
+
67
+ class MiMoForCausalLM(Qwen2ForCausalLM):
68
+ config_class = MiMoConfig
69
+ def __init__(self, config: MiMoConfig):
70
+ super(Qwen2ForCausalLM, self).__init__(config)
71
+ self.model = MiMoModel(config)
72
+ self.vocab_size = config.vocab_size
73
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
74
+
75
+ self.post_init()
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff