init Xiaomi-MiMo
Browse files- README.md +213 -0
- config.json +36 -0
- configuration_mimo.py +16 -0
- generation_config.json +7 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +458 -0
- modeling_mimo.py +75 -0
- tokenizer.json +0 -0
- tokenizer_config.json +207 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<picture>
|
7 |
+
<source srcset="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/Xiaomi_MiMo_darkmode.png?raw=true" media="(prefers-color-scheme: dark)">
|
8 |
+
<img src="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/Xiaomi_MiMo.png?raw=true" width="60%" alt="Xiaomi-MiMo" />
|
9 |
+
</picture>
|
10 |
+
</div>
|
11 |
+
|
12 |
+
<h3 align="center">
|
13 |
+
<b>
|
14 |
+
<span>━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━</span>
|
15 |
+
<br/>
|
16 |
+
Unlocking the Reasoning Potential of Language Model<br/>From Pretraining to Posttraining
|
17 |
+
<br/>
|
18 |
+
<span>━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━</span>
|
19 |
+
<br/>
|
20 |
+
</b>
|
21 |
+
</h3>
|
22 |
+
|
23 |
+
<br/>
|
24 |
+
|
25 |
+
<div align="center" style="line-height: 1;">
|
26 |
+
|
|
27 |
+
<a href="https://huggingface.co/XiaomiMiMo" target="_blank">🤗 HuggingFace</a>
|
28 |
+
|
|
29 |
+
<a href="https://github.com/XiaomiMiMo/MiMo/report.pdf?raw=true" target="_blank">📔 Technical Report</a>
|
30 |
+
|
|
31 |
+
<br/>
|
32 |
+
</div>
|
33 |
+
|
34 |
+
<br/>
|
35 |
+
|
36 |
+
> This model repository is licensed under the MIT License.
|
37 |
+
|
38 |
+
## I. Introduction
|
39 |
+
|
40 |
+
Currently, most successful RL works, including open-source research, rely on relatively large base models, e.g., 32B models, particularly for enhancing code reasoning capabilities. Moreover, it was widely considered that achieving uniform and simultaneous improvements in both mathematical and code capabilities within a small model is challenging. Nonetheless, we believe that the effectiveness of the RL trained reasoning model relies on the inherent reasoning potential of the base model. To fully unlock the reasoning potential of language models, efforts must focus not only on post-training but also on pre-training strategies tailored to reasoning.
|
41 |
+
|
42 |
+
In this work, we present MiMo-7B, a series of models trained from scratch and born for reasoning tasks. Our RL experiments from MiMo-7B-Base show that our model possesses extraordinary reasoning potential, even surpassing much larger 32B models. Additionally, we perform RL training on a cold-started SFT model, resulting in MiMo-7B-RL, which demonstrates superior performance on both mathematics and code reasoning tasks, matching the performance of OpenAI o1-mini.
|
43 |
+
|
44 |
+
<p align="center">
|
45 |
+
<img width="80%" src="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/curve.png?raw=true">
|
46 |
+
</p>
|
47 |
+
|
48 |
+
We open-source MiMo-7B series, including checkpoints of the base model, SFT model, RL model trained from base model, and RL model trained from the SFT model.
|
49 |
+
We believe this report along with the models will provides valuable insights to develop powerful reasoning LLM that benefit the larger community.
|
50 |
+
|
51 |
+
### 🌟 Highlights
|
52 |
+
|
53 |
+
- **Pre-Training: Base Model Born for Reasoning**
|
54 |
+
- We optimize data preprocessing pipeline, enhancing text extraction toolkits and applying multi-dimensional data filtering to increase reasoning pattern density in pre-training data. We also employ multiple strategies to generate massive diverse synthetic reasoning data.
|
55 |
+
- We adopt a three-stage data mixture strategy for pre-training. Overall, MiMo-7B-Base is pre-trained on approximately 25 trillion tokens.
|
56 |
+
- We incorporate Multiple-Token Prediction as an additional training objective, which enhances model performance and accelerates inference.
|
57 |
+
|
58 |
+
- **Post-Training Recipe: Pioneering Reasoning Model**
|
59 |
+
- We curate 130K mathematics and code problems as RL training data, which can be verified by rule-based verifiers. Each problem undergoes careful cleaning and difficulty assessment to ensure quality. We employ only rule-based accuracy rewards to avoid potential reward hacking.
|
60 |
+
- To mitigate the sparse reward issue for challenging code problems, we introduce a test difficulty driven code reward. By assigning fine-grained scores for test cases with varying difficulty levels, the policy can be more effectively optimized via dense reward signal.
|
61 |
+
- We implement a data re-sampling strategy for easy problems to enhance rollout sampling efficiency and stabilize policy updates, particularly in the later phases of RL training.
|
62 |
+
|
63 |
+
- **RL Infrastructures**
|
64 |
+
- We develop a Seamless Rollout Engine to accelerate RL training and validation. Our design integrates continuous rollout, asynchronous reward computation, and early termination to minimize GPU idle time, achieving 2.29$\times$ faster training and 1.96$\times$ faster validation.
|
65 |
+
- We support MTP in vLLM and enhance the robustness of the inference engine in RL system.
|
66 |
+
|
67 |
+
|
68 |
+
## II. Model Details
|
69 |
+
|
70 |
+
> Models are avaliable at [https://huggingface.co/XiaomiMiMo](https://huggingface.co/XiaomiMiMo)
|
71 |
+
|
72 |
+
| **Model** | **Description** | **Download** |
|
73 |
+
| :-------------: | :---------------------------------------------------------------------------: | :-------------------------------------------------------------------------------: |
|
74 |
+
| MiMo-7B-Base | Base model with extraordinary reasoning potential | [🤗 XiaomiMiMo/MiMo-7B-Base](https://huggingface.co/XiaomiMiMo/MiMo-7B-Base) |
|
75 |
+
| MiMo-7B-RL-Zero | RL model trained from base model | [🤗 XiaomiMiMo/MiMo-7B-RL-Zero](https://huggingface.co/XiaomiMiMo/MiMo-7B-RL-Zero) |
|
76 |
+
| **MiMo-7B-SFT** | SFT model trained from base model | [🤗 XiaomiMiMo/MiMo-7B-SFT](https://huggingface.co/XiaomiMiMo/MiMo-7B-SFT) |
|
77 |
+
| MiMo-7B-RL | RL model trained from SFT model, superior performance matching OpenAI o1-mini | [🤗 XiaomiMiMo/MiMo-7B-RL](https://huggingface.co/XiaomiMiMo/MiMo-7B-RL) |
|
78 |
+
|
79 |
+
## III. Evaluation Results
|
80 |
+
|
81 |
+
| Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet-1022 | OpenAI o1-mini | QwQ-32B-Preview | R1-Distill-Qwen-14B | R1-Distill-Qwen-7B | **MiMo-7B-RL** |
|
82 |
+
| ----------------------------- | :---------: | :--------------------: | :------------: | :-------------: | :-----------------: | :----------------: | :------------: |
|
83 |
+
| **General** | | | | | | | |
|
84 |
+
| GPQA Diamond<br/>(Pass@1) | 49.9 | 65.0 | 60.0 | 54.5 | 59.1 | 49.1 | 54.4 |
|
85 |
+
| SuperGPQA<br/>(Pass@1) | 42.4 | 48.2 | 45.2 | 43.6 | 40.6 | 28.9 | 40.5 |
|
86 |
+
| DROP<br/>(3-shot F1) | 83.7 | 88.3 | 83.9 | 71.2 | 85.5 | 77.0 | 78.7 |
|
87 |
+
| MMLU-Pro<br/>(EM) | 72.6 | 78.0 | 80.3 | 52.0 | 68.8 | 53.5 | 58.6 |
|
88 |
+
| IF-Eval<br/>(Prompt Strict) | 84.3 | 86.5 | 84.8 | 40.4 | 78.3 | 60.5 | 61.0 |
|
89 |
+
| **Mathematics** | | | | | | | |
|
90 |
+
| MATH-500<br/>(Pass@1) | 74.6 | 78.3 | 90.0 | 90.6 | 93.9 | 92.8 | 95.8 |
|
91 |
+
| AIME 2024<br/>(Pass@1) | 9.3 | 16.0 | 63.6 | 50.0 | 69.7 | 55.5 | 68.2 |
|
92 |
+
| AIME 2025<br/>(Pass@1) | 11.6 | 7.4 | 50.7 | 32.4 | 48.2 | 38.8 | 55.4 |
|
93 |
+
| **Code** | | | | | | | |
|
94 |
+
| LiveCodeBench v5<br/>(Pass@1) | 32.9 | 38.9 | 53.8 | 41.9 | 53.1 | 37.6 | 57.8 |
|
95 |
+
| LiveCodeBench v6<br/>(Pass@1) | 30.9 | - | 46.8 | 39.1 | 31.9 | 23.9 | 49.3 |
|
96 |
+
|
97 |
+
MiMo-7B series
|
98 |
+
|
99 |
+
| Benchmark | MiMo-7B-Base | MiMo-7B-RL-Zero | **MiMo-7B-SFT** | MiMo-7B-RL |
|
100 |
+
| ----------------------------- | :----------: | :-------------: | :-------------: | :--------: |
|
101 |
+
| **Mathematics** | | | | |
|
102 |
+
| MATH500<br/>(Pass@1) | 37.4 | 93.6 | 93.0 | 95.8 |
|
103 |
+
| AIME 2024<br/>(Pass@1) | 32.9 | 56.4 | 58.7 | 68.2 |
|
104 |
+
| AIME 2025<br/>(Pass@1) | 24.3 | 46.3 | 44.3 | 55.4 |
|
105 |
+
| **Code** | | | | |
|
106 |
+
| LiveCodeBench v5<br/>(Pass@1) | 32.9 | 49.1 | 52.3 | 57.8 |
|
107 |
+
| LiveCodeBench v6<br/>(Pass@1) | 29.1 | 42.9 | 45.5 | 49.3 |
|
108 |
+
|
109 |
+
> [!IMPORTANT]
|
110 |
+
> The evaluation are conducted with `temperature=0.6`.
|
111 |
+
>
|
112 |
+
> AIME24 and AIME25 are with averaged score of 32 repetitions. LiveCodeBench v5 (20240801-20250201), LiveCodeBench v6 (20250201-20250501), GPQA-Diamond and IF-Eval are with averaged score of 8 repetitions. MATH500 and SuperGPQA are with a single run.
|
113 |
+
|
114 |
+
## IV. Deployment
|
115 |
+
|
116 |
+
### vLLM inference
|
117 |
+
|
118 |
+
1. [Recommended] We official support inference with MiMo-MTP using [our fork of vLLM](https://github.com/XiaomiMiMo/vllm/tree/feat_mimo_mtp).
|
119 |
+
|
120 |
+
Example script
|
121 |
+
|
122 |
+
```py
|
123 |
+
from vllm import LLM, SamplingParams
|
124 |
+
|
125 |
+
model_path = "/path/to/MiMo"
|
126 |
+
llm = LLM(
|
127 |
+
model=model_path,
|
128 |
+
trust_remote_code=True,
|
129 |
+
num_speculative_tokens=1,
|
130 |
+
disable_log_stats=False
|
131 |
+
)
|
132 |
+
sampling_params = SamplingParams(temperature=0.6)
|
133 |
+
|
134 |
+
conversation = [
|
135 |
+
{
|
136 |
+
"role": "system",
|
137 |
+
"content": ""
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"role": "user",
|
141 |
+
"content": "Write an essay about the importance of higher education.",
|
142 |
+
},
|
143 |
+
]
|
144 |
+
|
145 |
+
outputs = llm.chat(conversation,
|
146 |
+
sampling_params=sampling_params,
|
147 |
+
use_tqdm=False)
|
148 |
+
|
149 |
+
for output in outputs:
|
150 |
+
prompt = output.prompt
|
151 |
+
generated_text = output.outputs[0].text
|
152 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
153 |
+
|
154 |
+
print("=" * 80)
|
155 |
+
```
|
156 |
+
|
157 |
+
2. Or, you can register a vLLM loader for MiMo without loading MTP parameters.
|
158 |
+
|
159 |
+
You can copy the [`registry/register_mimo_in_vllm.py`](https://github.com/XiaomiMiMo/MiMo/blob/main/registry/register_mimo_in_vllm.py) to your directory and import it with
|
160 |
+
|
161 |
+
```py
|
162 |
+
import register_mimo_in_vllm
|
163 |
+
|
164 |
+
from vllm import LLM, SamplingParams
|
165 |
+
|
166 |
+
model_path = "/path/to/MiMo"
|
167 |
+
llm = LLM(
|
168 |
+
model=model_path,
|
169 |
+
trust_remote_code=True,
|
170 |
+
# num_speculative_tokens=1,
|
171 |
+
disable_log_stats=False
|
172 |
+
)
|
173 |
+
sampling_params = SamplingParams(temperature=0.6)
|
174 |
+
```
|
175 |
+
|
176 |
+
### HuggingFace inference
|
177 |
+
|
178 |
+
Example script
|
179 |
+
|
180 |
+
```py
|
181 |
+
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
182 |
+
|
183 |
+
model_path = "/path/to/MiMo"
|
184 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
185 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
186 |
+
inputs = tokenizer(["Today is"], return_tensors='pt')
|
187 |
+
output = model.generate(**inputs, max_new_tokens = 100)
|
188 |
+
print(tokenizer.decode(output.tolist()[0]))
|
189 |
+
```
|
190 |
+
|
191 |
+
### Recommended environment and prompts
|
192 |
+
|
193 |
+
- We recommend using [our fork of vLLM](https://github.com/XiaomiMiMo/vllm/tree/feat_mimo_mtp) which is developed based on vLLM 0.7.3.
|
194 |
+
- We recommend using empty system prompt.
|
195 |
+
|
196 |
+
> We haven't verified MiMo with other inference engines and welcome contributions based on the model definition in the Huggingface repo 💻.
|
197 |
+
|
198 |
+
## V. Citation
|
199 |
+
|
200 |
+
```bibtex
|
201 |
+
@misc{xiaomi2025mimo,
|
202 |
+
title={MiMo: Unlocking the Reasoning Potential of Language Model – From Pretraining to Posttraining},
|
203 |
+
author={{Xiaomi LLM-Core Team}},
|
204 |
+
year={2025},
|
205 |
+
primaryClass={cs.CL},
|
206 |
+
url={https://github.com/XiaomiMiMo/MiMo},
|
207 |
+
}
|
208 |
+
```
|
209 |
+
|
210 |
+
|
211 |
+
## VI. Contact
|
212 |
+
|
213 |
+
Please contact us at [[email protected]](mailto:[email protected]) or open an issue if you have any questions.
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MiMoForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_mimo.MiMoConfig",
|
7 |
+
"AutoModel": "modeling_mimo.MiMoModel",
|
8 |
+
"AutoModelForCausalLM": "modeling_mimo.MiMoForCausalLM"
|
9 |
+
},
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"bos_token_id": 151643,
|
12 |
+
"eos_token_id": 151645,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 11008,
|
17 |
+
"max_position_embeddings": 32768,
|
18 |
+
"max_window_layers": 32,
|
19 |
+
"model_type": "mimo",
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"head_dim": 128,
|
22 |
+
"num_hidden_layers": 36,
|
23 |
+
"num_key_value_heads": 8,
|
24 |
+
"rms_norm_eps": 1e-05,
|
25 |
+
"rope_theta": 640000,
|
26 |
+
"sliding_window": 32768,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "bfloat16",
|
29 |
+
"transformers_version": "4.40.1",
|
30 |
+
"use_cache": true,
|
31 |
+
"use_mrope": false,
|
32 |
+
"use_sliding_window": false,
|
33 |
+
"vocab_size": 151680,
|
34 |
+
"attention_bias": true,
|
35 |
+
"num_nextn_predict_layers": 1
|
36 |
+
}
|
configuration_mimo.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
|
2 |
+
|
3 |
+
class MiMoConfig(Qwen2Config):
|
4 |
+
model_type = "mimo"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
*args,
|
9 |
+
num_nextn_predict_layers=0,
|
10 |
+
**kwargs
|
11 |
+
):
|
12 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
13 |
+
super().__init__(
|
14 |
+
*args,
|
15 |
+
**kwargs,
|
16 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": false,
|
4 |
+
"eos_token_id": 151645,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.37.0"
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f35c4cfd4a34aec4fb82922ad592e0fa80682fde8e1244eb455b0103f4a2ae15
|
3 |
+
size 3987958288
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c6398139d06c6466c44c06376042084e575e4490e9801cc3211f75acaa51a02
|
3 |
+
size 3989130384
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8fb479f5620f150691bf99d678a3eb5d8ad2529b3c3decc55392da10ebe48ba
|
3 |
+
size 3982835320
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2afcf01dda7b2722837966adbc21c96d59b5ab3bcd80d8c5b2f2d9e02d1d8c4
|
3 |
+
size 3706946944
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15666819072
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
440 |
+
"model.mtp_layers.0.final_layernorm.weight": "model-00004-of-00004.safetensors",
|
441 |
+
"model.mtp_layers.0.hidden_layernorm.weight": "model-00004-of-00004.safetensors",
|
442 |
+
"model.mtp_layers.0.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
443 |
+
"model.mtp_layers.0.input_proj.weight": "model-00004-of-00004.safetensors",
|
444 |
+
"model.mtp_layers.0.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
445 |
+
"model.mtp_layers.0.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
446 |
+
"model.mtp_layers.0.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
447 |
+
"model.mtp_layers.0.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
448 |
+
"model.mtp_layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
449 |
+
"model.mtp_layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
450 |
+
"model.mtp_layers.0.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
451 |
+
"model.mtp_layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
452 |
+
"model.mtp_layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
453 |
+
"model.mtp_layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
454 |
+
"model.mtp_layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
455 |
+
"model.mtp_layers.0.token_layernorm.weight": "model-00004-of-00004.safetensors",
|
456 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
457 |
+
}
|
458 |
+
}
|
modeling_mimo.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from transformers.cache_utils import Cache
|
6 |
+
from transformers.models.qwen2.modeling_qwen2 import (Qwen2Attention,
|
7 |
+
Qwen2ForCausalLM,
|
8 |
+
Qwen2MLP, Qwen2Model,
|
9 |
+
Qwen2RMSNorm)
|
10 |
+
|
11 |
+
from .configuration_mimo import MiMoConfig
|
12 |
+
|
13 |
+
|
14 |
+
class MiMoMTPLayers(nn.Module):
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__()
|
17 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
18 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
19 |
+
self.token_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
20 |
+
self.hidden_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
21 |
+
self.input_proj = nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False)
|
22 |
+
self.final_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
23 |
+
self.self_attn = Qwen2Attention(config, layer_idx=0)
|
24 |
+
self.mlp = Qwen2MLP(config)
|
25 |
+
|
26 |
+
def forward(self, input_embeds,
|
27 |
+
hidden_states,
|
28 |
+
attention_mask,
|
29 |
+
position_ids,
|
30 |
+
past_key_values: Optional[Cache]=None,
|
31 |
+
output_attentions: Optional[bool]=False,
|
32 |
+
use_cache: Optional[bool]=False,
|
33 |
+
position_embedding: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
34 |
+
cache_position=None,
|
35 |
+
**kwargs):
|
36 |
+
input_embeds = self.token_layernorm(input_embeds)
|
37 |
+
previous_hidden_states = self.hidden_layernorm(hidden_states)
|
38 |
+
hidden_states = self.input_proj(torch.cat([previous_hidden_states, input_embeds], dim=-1))
|
39 |
+
residual = hidden_states
|
40 |
+
hidden_states = self.input_layernorm(hidden_states)
|
41 |
+
hidden_states, _ = self.self_attn(hidden_states,
|
42 |
+
attention_mask=attention_mask,
|
43 |
+
position_ids=position_ids,
|
44 |
+
past_key_values=past_key_values,
|
45 |
+
output_attentions=output_attentions,
|
46 |
+
use_cache=use_cache,
|
47 |
+
cache_position=cache_position,
|
48 |
+
position_embedding=position_embedding,
|
49 |
+
**kwargs)
|
50 |
+
hidden_states = residual + hidden_states
|
51 |
+
residual = hidden_states
|
52 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
53 |
+
hidden_states = self.mlp(hidden_states)
|
54 |
+
hidden_states = residual + hidden_states
|
55 |
+
hidden_states = self.final_layernorm(hidden_states)
|
56 |
+
return hidden_states
|
57 |
+
|
58 |
+
|
59 |
+
class MiMoModel(Qwen2Model):
|
60 |
+
config_class = MiMoConfig
|
61 |
+
|
62 |
+
def __init__(self, config: MiMoConfig):
|
63 |
+
super().__init__(config)
|
64 |
+
self.mtp_layers = nn.ModuleList([MiMoMTPLayers(config) for _ in range(config.num_nextn_predict_layers)])
|
65 |
+
|
66 |
+
|
67 |
+
class MiMoForCausalLM(Qwen2ForCausalLM):
|
68 |
+
config_class = MiMoConfig
|
69 |
+
def __init__(self, config: MiMoConfig):
|
70 |
+
super(Qwen2ForCausalLM, self).__init__(config)
|
71 |
+
self.model = MiMoModel(config)
|
72 |
+
self.vocab_size = config.vocab_size
|
73 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
74 |
+
|
75 |
+
self.post_init()
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|