|
|
|
|
|
'''
|
|
@license: (C) Copyright 2021, Hey.
|
|
@author: Hey
|
|
@email: [email protected]
|
|
@tel: 137****6540
|
|
@datetime: 2023/5/3 20:35
|
|
@project: LucaOne
|
|
@file: loss.py
|
|
@desc: loss
|
|
'''
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .masked_loss import _MaskedLoss
|
|
|
|
class MaskedFocalLoss(_MaskedLoss):
|
|
"""Masked FocalLoss"""
|
|
def __init__(self, alpha=1, gamma=2, normalization=False, reduction='mean', ignore_nans=True, ignore_value=-100):
|
|
super().__init__(reduction=reduction, ignore_nans=ignore_nans, ignore_value=ignore_value)
|
|
self.criterion = FocalLoss(alpha=alpha, gamma=gamma, normalization=normalization, reduction='none')
|
|
|
|
|
|
class FocalLoss(nn.Module):
|
|
'''
|
|
Focal loss
|
|
'''
|
|
def __init__(self, alpha=1, gamma=2, normalization=False, reduction="mean"):
|
|
super(FocalLoss, self).__init__()
|
|
self.alpha = alpha
|
|
self.gamma = gamma
|
|
self.normalization = normalization
|
|
self.reduction = reduction
|
|
|
|
def forward(self, inputs, targets):
|
|
if self.normalization:
|
|
'''
|
|
reduction: the operation on the output loss, which can be set to 'none', 'mean', and 'sum';
|
|
'none' will not perform any processing on the loss,
|
|
'mean' will calculate the mean of the loss,
|
|
'sum' will sum the loss, and the default is 'mean'
|
|
'''
|
|
bce = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')
|
|
probs = torch.sigmoid(inputs)
|
|
else:
|
|
bce = F.binary_cross_entropy(inputs, targets, reduction='none')
|
|
probs = inputs
|
|
pt = targets * probs + (1 - targets) * (1 - probs)
|
|
modulate = 1 if self.gamma is None else (1 - pt) ** self.gamma
|
|
|
|
focal_loss = modulate * bce
|
|
|
|
if self.alpha is not None:
|
|
assert 0 <= self.alpha <= 1
|
|
alpha_weights = targets * self.alpha + (1 - targets) * (1 - self.alpha)
|
|
focal_loss *= alpha_weights
|
|
if self.reduction == "mean":
|
|
|
|
return torch.mean(focal_loss)
|
|
if self.reduction in ["summean", "meansum"]:
|
|
|
|
return torch.mean(torch.sum(focal_loss, dim=1))
|
|
elif self.reduction == "sum":
|
|
return torch.sum(focal_loss, dim=1)
|
|
else:
|
|
return focal_loss
|
|
|
|
|
|
class MaskedMultiLabelCCE(_MaskedLoss):
|
|
"""Masked MultiLabel CCE"""
|
|
def __init__(self, normalization=False, reduction='mean', ignore_nans=True, ignore_value=-100):
|
|
super().__init__(reduction=reduction, ignore_nans=ignore_nans, ignore_value=ignore_value)
|
|
self.criterion = MultiLabelCCE(normalization=normalization, reduction='none')
|
|
|
|
|
|
class MultiLabelCCE(nn.Module):
|
|
'''
|
|
Multi Label CCE
|
|
'''
|
|
def __init__(self, normalization=False, reduction='mean'):
|
|
super(MultiLabelCCE, self).__init__()
|
|
self.normalization = normalization
|
|
self.reduction = reduction
|
|
|
|
def forward(self, inputs, targets):
|
|
"""
|
|
Cross entropy of multi-label classification
|
|
Note:The shapes of y_true and y_pred are consistent, and the elements of y_true are either 0 or 1. 1 indicates
|
|
that the corresponding class is a target class, and 0 indicates that the corresponding class is a non-target class.
|
|
"""
|
|
if self.normalization:
|
|
y_pred = torch.softmax(inputs, dim=-1)
|
|
else:
|
|
y_pred = inputs
|
|
y_true = targets
|
|
y_pred = (1 - 2 * y_true) * y_pred
|
|
y_pred_neg = y_pred - y_true * 1e12
|
|
y_pred_pos = y_pred - (1 - y_true) * 1e12
|
|
zeros = torch.zeros_like(y_pred[..., :1])
|
|
y_pred_neg = torch.cat((y_pred_neg, zeros), axis=-1)
|
|
y_pred_pos = torch.cat((y_pred_pos, zeros), axis=-1)
|
|
neg_loss = torch.logsumexp(y_pred_neg, axis=-1)
|
|
pos_loss = torch.logsumexp(y_pred_pos, axis=-1)
|
|
if self.reduction == 'mean':
|
|
return torch.mean(neg_loss + pos_loss)
|
|
elif self.reduction == 'sum':
|
|
return torch.sum(neg_loss + pos_loss)
|
|
else:
|
|
return neg_loss + pos_loss
|
|
|
|
|
|
class MaskedAsymmetricLoss(_MaskedLoss):
|
|
"""Masked AsymmetricLoss"""
|
|
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False, reduction='mean', ignore_nans=True, ignore_value=-100):
|
|
super().__init__(reduction=reduction, ignore_nans=ignore_nans, ignore_value=ignore_value)
|
|
self.criterion = AsymmetricLoss(gamma_neg, gamma_pos, clip, eps, disable_torch_grad_focal_loss)
|
|
|
|
|
|
class AsymmetricLoss(nn.Module):
|
|
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=True):
|
|
super(AsymmetricLoss, self).__init__()
|
|
|
|
self.gamma_neg = gamma_neg
|
|
self.gamma_pos = gamma_pos
|
|
self.clip = clip
|
|
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
|
|
self.eps = eps
|
|
|
|
def forward(self, x, y):
|
|
""""
|
|
Parameters
|
|
----------
|
|
x: input logits
|
|
y: targets (multi-label binarized vector)
|
|
"""
|
|
|
|
|
|
x_sigmoid = torch.sigmoid(x)
|
|
xs_pos = x_sigmoid
|
|
xs_neg = 1 - x_sigmoid
|
|
|
|
|
|
if self.clip is not None and self.clip > 0:
|
|
xs_neg = (xs_neg + self.clip).clamp(max=1)
|
|
|
|
|
|
los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
|
|
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
|
|
loss = los_pos + los_neg
|
|
|
|
|
|
if self.gamma_neg > 0 or self.gamma_pos > 0:
|
|
if self.disable_torch_grad_focal_loss:
|
|
torch.set_grad_enabled(False)
|
|
pt0 = xs_pos * y
|
|
pt1 = xs_neg * (1 - y)
|
|
pt = pt0 + pt1
|
|
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
|
|
one_sided_w = torch.pow(1 - pt, one_sided_gamma)
|
|
if self.disable_torch_grad_focal_loss:
|
|
torch.set_grad_enabled(True)
|
|
loss *= one_sided_w
|
|
|
|
return -loss.sum()
|
|
|
|
|
|
class MaskedAsymmetricLossOptimized(_MaskedLoss):
|
|
"""Masked ASLSingleLabel loss"""
|
|
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False, reduction='mean', ignore_nans=True, ignore_value=-100):
|
|
super().__init__(reduction=reduction, ignore_nans=ignore_nans, ignore_value=ignore_value)
|
|
self.criterion = AsymmetricLossOptimized(gamma_neg, gamma_pos, clip, eps, disable_torch_grad_focal_loss)
|
|
|
|
|
|
class AsymmetricLossOptimized(nn.Module):
|
|
'''
|
|
Notice - optimized version, minimizes memory allocation and gpu uploading,
|
|
favors inplace operations
|
|
'''
|
|
|
|
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False):
|
|
super(AsymmetricLossOptimized, self).__init__()
|
|
|
|
self.gamma_neg = gamma_neg
|
|
self.gamma_pos = gamma_pos
|
|
self.clip = clip
|
|
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
|
|
self.eps = eps
|
|
|
|
|
|
self.targets = self.anti_targets = self.xs_pos = self.xs_neg = self.asymmetric_w = self.loss = None
|
|
|
|
def forward(self, x, y):
|
|
""""
|
|
Parameters
|
|
----------
|
|
x: input logits
|
|
y: targets (multi-label binarized vector)
|
|
"""
|
|
|
|
self.targets = y
|
|
self.anti_targets = 1 - y
|
|
|
|
|
|
self.xs_pos = torch.sigmoid(x)
|
|
self.xs_neg = 1.0 - self.xs_pos
|
|
|
|
|
|
if self.clip is not None and self.clip > 0:
|
|
self.xs_neg.add_(self.clip).clamp_(max=1)
|
|
|
|
|
|
self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps))
|
|
self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min=self.eps)))
|
|
|
|
|
|
if self.gamma_neg > 0 or self.gamma_pos > 0:
|
|
if self.disable_torch_grad_focal_loss:
|
|
torch.set_grad_enabled(False)
|
|
self.xs_pos = self.xs_pos * self.targets
|
|
self.xs_neg = self.xs_neg * self.anti_targets
|
|
self.asymmetric_w = torch.pow(1 - self.xs_pos - self.xs_neg,
|
|
self.gamma_pos * self.targets + self.gamma_neg * self.anti_targets)
|
|
if self.disable_torch_grad_focal_loss:
|
|
torch.set_grad_enabled(True)
|
|
self.loss *= self.asymmetric_w
|
|
|
|
return -self.loss.sum()
|
|
|
|
|
|
class MaskedASLSingleLabel(_MaskedLoss):
|
|
"""Masked ASLSingleLabel loss"""
|
|
def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction='mean', ignore_nans=True, ignore_value=-100):
|
|
super().__init__(reduction=reduction, ignore_nans=ignore_nans, ignore_value=ignore_value)
|
|
self.criterion = ASLSingleLabel(gamma_pos, gamma_neg, eps, reduction='none')
|
|
|
|
|
|
class ASLSingleLabel(nn.Module):
|
|
'''
|
|
This loss is intended for single-label classification problems(multi-class)
|
|
'''
|
|
def __init__(self, gamma_pos=0, gamma_neg=4, eps: float = 0.1, reduction='mean'):
|
|
super(ASLSingleLabel, self).__init__()
|
|
|
|
self.eps = eps
|
|
self.logsoftmax = nn.LogSoftmax(dim=-1)
|
|
self.targets_classes = []
|
|
self.gamma_pos = gamma_pos
|
|
self.gamma_neg = gamma_neg
|
|
self.reduction = reduction
|
|
|
|
def forward(self, inputs, target):
|
|
'''
|
|
"input" dimensions: - (batch_size, number_classes)
|
|
"target" dimensions: - (batch_size)
|
|
'''
|
|
num_classes = inputs.size()[-1]
|
|
log_preds = self.logsoftmax(inputs)
|
|
self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1)
|
|
|
|
|
|
targets = self.targets_classes
|
|
anti_targets = 1 - targets
|
|
xs_pos = torch.exp(log_preds)
|
|
xs_neg = 1 - xs_pos
|
|
xs_pos = xs_pos * targets
|
|
xs_neg = xs_neg * anti_targets
|
|
asymmetric_w = torch.pow(1 - xs_pos - xs_neg, self.gamma_pos * targets + self.gamma_neg * anti_targets)
|
|
log_preds = log_preds * asymmetric_w
|
|
|
|
if self.eps > 0:
|
|
|
|
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes)
|
|
|
|
|
|
loss = - self.targets_classes.mul(log_preds)
|
|
|
|
loss = loss.sum(dim=-1)
|
|
if self.reduction == 'mean':
|
|
loss = loss.mean()
|
|
|
|
return loss
|
|
|
|
|
|
class MaskedBCEWithLogitsLoss(_MaskedLoss):
|
|
"""Masked MSE loss"""
|
|
def __init__(self, pos_weight=None, weight=None, reduction='mean', ignore_nans=True, ignore_value=-100):
|
|
super().__init__(reduction=reduction, ignore_nans=ignore_nans, ignore_value=ignore_value)
|
|
self.criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight, weight=weight, reduction='none')
|
|
|
|
|
|
class MaskedCrossEntropyLoss(_MaskedLoss):
|
|
"""Masked MSE loss"""
|
|
def __init__(self, weight=None, reduction='mean', ignore_nans=True, ignore_value=-100):
|
|
super().__init__(reduction=reduction, ignore_nans=ignore_nans, ignore_value=ignore_value)
|
|
self.criterion = nn.CrossEntropyLoss(weight=weight, reduction='none', ignore_index=ignore_value)
|
|
|