LucaOne / modeling_gplm.py
Yuanfei's picture
Update modeling_gplm.py
6b710a1 verified
raw
history blame contribute delete
42.1 kB
#!/usr/bin/env python
# encoding: utf-8
'''
@license: (C) Copyright 2021, Hey.
@author: Hey
@email: [email protected]
@tel: 137****6540
@datetime: 2023/7/24 10:01
@project: LucaOne
@file: modeling_gplm
@desc: LucaOne Model Detail
'''
import math
from typing import Dict, Optional, Sequence, Tuple, List, Union
import uuid
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import Parameter
def gelu(x):
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def symmetrize(x):
return x + x.transpose(-1, -2)
def apc(x):
a1 = x.sum(-1, keepdims=True)
a2 = x.sum(-2, keepdims=True)
a12 = x.sum((-1, -2), keepdims=True)
avg = a1 * a2
avg.div_(a12) # in-place to reduce memory
normalized = x - avg
return normalized
class LucaGPLM1LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12, affine=True):
"""Construct a layernorm layer in the TF style (eps inside the sqrt)."""
super().__init__()
self.hidden_size = (hidden_size,) if isinstance(hidden_size, int) else tuple(hidden_size)
self.eps = eps
self.affine = bool(affine)
if self.affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
else:
self.weight, self.bias = None, None
def forward(self, x):
dims = tuple(-(i + 1) for i in range(len(self.hidden_size)))
means = x.mean(dims, keepdim=True)
x_zeromean = x - means
variances = x_zeromean.pow(2).mean(dims, keepdim=True)
x = x_zeromean / torch.sqrt(variances + self.eps)
if self.affine:
x = (self.weight * x) + self.bias
return x
from torch.nn import LayerNorm as LucaGPLM1bLayerNorm
class LucaGPLMTransformerLayer(nn.Module):
"""LucaGPLM Transformer layer block."""
def __init__(
self,
embed_dim,
ffn_embed_dim,
attention_heads,
add_bias_kv=True,
use_lucagplm1b_layer_norm=False,
use_rotary_embeddings: bool = False,
):
'''
Tramsformer-Encoder 层
:param embed_dim: token embedding dim
:param ffn_embed_dim: fully connected layer dim
:param attention_heads: heads num
:param add_bias_kv: key-value layer add bias
:param use_lucagplm1b_layer_norm: whether to use lucagplm 1b layer norm
:param use_rotary_embeddings: whether to use rotary embedding
'''
super().__init__()
self.embed_dim = embed_dim
self.ffn_embed_dim = ffn_embed_dim
self.attention_heads = attention_heads
self.use_rotary_embeddings = use_rotary_embeddings
self._init_submodules(add_bias_kv, use_lucagplm1b_layer_norm)
def _init_submodules(self, add_bias_kv, use_lucagplm1b_layer_norm):
LucaGPLMLayerNorm = LucaGPLM1bLayerNorm if use_lucagplm1b_layer_norm else LucaGPLM1LayerNorm
# pre layer norm
self.pre_layer_norm = LucaGPLMLayerNorm(self.embed_dim)
self.self_attn = LucaGPLMMultiheadAttention(
self.embed_dim,
self.attention_heads,
add_bias_kv=add_bias_kv,
add_zero_attn=False,
use_rotary_embeddings=self.use_rotary_embeddings,
)
# post layer norm
self.post_layer_norm = LucaGPLMLayerNorm(self.embed_dim)
# dimension increase by the fully connected layer
self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim)
# dimension reduction by the fully connected layer
self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim)
def forward(
self,
x,
self_attn_mask=None,
self_attn_padding_mask=None,
need_head_weights=False
):
residual = x
x = self.pre_layer_norm(x)
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=True,
need_head_weights=need_head_weights,
attn_mask=self_attn_mask,
)
x = residual + x
residual = x
x = self.post_layer_norm(x)
x = gelu(self.fc1(x))
x = self.fc2(x)
x = residual + x
return x, attn
class AxialTransformerLayer(nn.Module):
def __init__(
self,
embedding_dim: int = 768,
ffn_embedding_dim: int = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
max_tokens_per_msa: int = 2**14,
) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = embedding_dim
self.dropout_prob = dropout
row_self_attention = RowSelfAttention(
embedding_dim,
num_attention_heads,
dropout=dropout,
max_tokens_per_msa=max_tokens_per_msa,
)
column_self_attention = ColumnSelfAttention(
embedding_dim,
num_attention_heads,
dropout=dropout,
max_tokens_per_msa=max_tokens_per_msa,
)
feed_forward_layer = FeedForwardNetwork(
embedding_dim,
ffn_embedding_dim,
activation_dropout=activation_dropout,
max_tokens_per_msa=max_tokens_per_msa,
)
self.row_self_attention = self.build_residual(row_self_attention)
self.column_self_attention = self.build_residual(column_self_attention)
self.feed_forward_layer = self.build_residual(feed_forward_layer)
def build_residual(self, layer: nn.Module):
return NormalizedResidualBlock(
layer,
self.embedding_dim,
self.dropout_prob,
)
def forward(
self,
x: torch.Tensor,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_head_weights: bool = False,
):
x, row_attn = self.row_self_attention(
x,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
)
x, column_attn = self.column_self_attention(
x,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
)
x = self.feed_forward_layer(x)
if need_head_weights:
return x, column_attn, row_attn
else:
return x
class LearnedPositionalEmbedding(nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
if padding_idx is not None:
num_embeddings_ = num_embeddings + padding_idx + 1
else:
num_embeddings_ = num_embeddings
super().__init__(num_embeddings_, embedding_dim, padding_idx)
self.max_positions = num_embeddings
def forward(self, input: torch.Tensor):
"""Input is expected to be of size [bsz x seqlen]."""
if input.size(1) > self.max_positions:
raise ValueError(
f"Sequence length {input.size(1)} above maximum "
f" sequence length of {self.max_positions}"
)
mask = input.ne(self.padding_idx).int()
positions = (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + self.padding_idx
return F.embedding(
positions,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
class SinusoidalPositionalEmbedding(nn.Module):
def __init__(self, embed_dim, padding_idx, learned=False):
super().__init__()
self.embed_dim = embed_dim
self.padding_idx = padding_idx
self.register_buffer("_float_tensor", torch.FloatTensor(1))
self.weights = None
def forward(self, x):
bsz, seq_len = x.shape
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
self.weights = self.get_embedding(max_pos)
self.weights = self.weights.type_as(self._float_tensor)
positions = self.make_positions(x)
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
def make_positions(self, x):
mask = x.ne(self.padding_idx)
range_buf = torch.arange(x.size(1), device=x.device).expand_as(x) + self.padding_idx + 1
positions = range_buf.expand_as(x)
return positions * mask.long() + self.padding_idx * (1 - mask.long())
def get_embedding(self, num_embeddings):
half_dim = self.embed_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if self.embed_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if self.padding_idx is not None:
emb[self.padding_idx, :] = 0
return emb
class RobertaLMHead(nn.Module):
def __init__(self, embed_dim, output_dim, weight):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.layer_norm = LucaGPLM1bLayerNorm(embed_dim)
self.weight = weight
self.bias = nn.Parameter(torch.zeros(output_dim))
def forward(self, features):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = F.linear(x, self.weight) + self.bias
return x
class ContactPredictionHead(nn.Module):
def __init__(
self,
in_features: int,
prepend_bos: bool,
append_eos: bool,
bias=True,
eos_idx: Optional[int] = None,
):
super().__init__()
self.in_features = in_features
self.prepend_bos = prepend_bos
self.append_eos = append_eos
if append_eos and eos_idx is None:
raise ValueError("Using an alphabet with eos token, but no eos token was passed in.")
self.eos_idx = eos_idx
self.regression = nn.Linear(in_features, 1, bias)
self.activation = nn.Sigmoid()
def forward(self, tokens, attentions):
# remove eos token attentions
if self.append_eos:
eos_mask = tokens.ne(self.eos_idx).to(attentions)
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
attentions = attentions * eos_mask[:, None, None, :, :]
attentions = attentions[..., :-1, :-1]
# remove cls token attentions
if self.prepend_bos:
attentions = attentions[..., 1:, 1:]
batch_size, layers, heads, seqlen, _ = attentions.size()
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
# features: B x C x T x T
attentions = attentions.to(
self.regression.weight.device
) # attentions always float32, may need to convert to float16
attentions = apc(symmetrize(attentions))
attentions = attentions.permute(0, 2, 3, 1)
return self.activation(self.regression(attentions).squeeze(3))
class NormalizedResidualBlock(nn.Module):
def __init__(
self,
layer: nn.Module,
embedding_dim: int,
dropout: float = 0.1,
):
super().__init__()
self.embedding_dim = embedding_dim
self.layer = layer
self.dropout_module = nn.Dropout(
dropout,
)
self.layer_norm = LucaGPLM1bLayerNorm(self.embedding_dim)
def forward(self, x, *args, **kwargs):
residual = x
x = self.layer_norm(x)
outputs = self.layer(x, *args, **kwargs)
if isinstance(outputs, tuple):
x, *out = outputs
else:
x = outputs
out = None
x = self.dropout_module(x)
x = residual + x
if out is not None:
return (x,) + tuple(out)
else:
return x
class FeedForwardNetwork(nn.Module):
def __init__(
self,
embedding_dim: int,
ffn_embedding_dim: int,
activation_dropout: float = 0.1,
max_tokens_per_msa: int = 2**14,
):
super().__init__()
self.embedding_dim = embedding_dim
self.ffn_embedding_dim = ffn_embedding_dim
self.max_tokens_per_msa = max_tokens_per_msa
self.activation_fn = nn.GELU()
self.activation_dropout_module = nn.Dropout(
activation_dropout,
)
self.fc1 = nn.Linear(embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, embedding_dim)
def forward(self, x):
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
return x
class RowSelfAttention(nn.Module):
"""Compute self-attention over rows of a 2D input."""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
max_tokens_per_msa: int = 2 ** 16,
):
super().__init__()
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim ** -0.5
self.max_tokens_per_msa = max_tokens_per_msa
self.attn_shape = "hnij"
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.out_proj = nn.Linear(embed_dim, embed_dim)
self.dropout_module = nn.Dropout(dropout)
def align_scaling(self, q):
num_rows = q.size(0)
return self.scaling / math.sqrt(num_rows)
def _batched_forward(
self,
x,
self_attn_mask=None,
self_attn_padding_mask=None,
):
num_rows, num_cols, batch_size, embed_dim = x.size()
max_rows = max(1, self.max_tokens_per_msa // num_cols)
attns = 0
scaling = self.align_scaling(x)
for start in range(0, num_rows, max_rows):
attn_weights = self.compute_attention_weights(
x[start : start + max_rows],
scaling,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask[:, start : start + max_rows]
if self_attn_padding_mask is not None
else None,
)
attns += attn_weights
attn_probs = attns.softmax(-1)
attn_probs = self.dropout_module(attn_probs)
outputs = []
for start in range(0, num_rows, max_rows):
output = self.compute_attention_update(x[start : start + max_rows], attn_probs)
outputs.append(output)
output = torch.cat(outputs, 0)
return output, attn_probs
def compute_attention_weights(
self,
x,
scaling: float,
self_attn_mask=None,
self_attn_padding_mask=None,
):
num_rows, num_cols, batch_size, embed_dim = x.size()
q = self.q_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
k = self.k_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
q *= scaling
if self_attn_padding_mask is not None:
# Zero out any padded aligned positions - this is important since
# we take a sum across the alignment axis.
q *= 1 - self_attn_padding_mask.permute(1, 2, 0).unsqueeze(3).unsqueeze(4).to(q)
attn_weights = torch.einsum(f"rinhd,rjnhd->{self.attn_shape}", q, k)
if self_attn_mask is not None:
raise NotImplementedError
# Mask Size: [B x R x C], Weights Size: [H x B x C x C]
if self_attn_padding_mask is not None:
attn_weights = attn_weights.masked_fill(
self_attn_padding_mask[:, 0].unsqueeze(0).unsqueeze(2),
-10000,
)
return attn_weights
def compute_attention_update(
self,
x,
attn_probs,
):
num_rows, num_cols, batch_size, embed_dim = x.size()
v = self.v_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
context = torch.einsum(f"{self.attn_shape},rjnhd->rinhd", attn_probs, v)
context = context.contiguous().view(num_rows, num_cols, batch_size, embed_dim)
output = self.out_proj(context)
return output
def forward(
self,
x,
self_attn_mask=None,
self_attn_padding_mask=None,
):
num_rows, num_cols, batch_size, embed_dim = x.size()
if (num_rows * num_cols > self.max_tokens_per_msa) and not torch.is_grad_enabled():
return self._batched_forward(x, self_attn_mask, self_attn_padding_mask)
else:
scaling = self.align_scaling(x)
attn_weights = self.compute_attention_weights(
x, scaling, self_attn_mask, self_attn_padding_mask
)
attn_probs = attn_weights.softmax(-1)
attn_probs = self.dropout_module(attn_probs)
output = self.compute_attention_update(x, attn_probs)
return output, attn_probs
class ColumnSelfAttention(nn.Module):
"""Compute self-attention over columns of a 2D input."""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
max_tokens_per_msa: int = 2 ** 16,
):
super().__init__()
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim ** -0.5
self.max_tokens_per_msa = max_tokens_per_msa
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.out_proj = nn.Linear(embed_dim, embed_dim)
self.dropout_module = nn.Dropout(dropout)
def _batched_forward(
self,
x,
self_attn_mask=None,
self_attn_padding_mask=None,
):
num_rows, num_cols, batch_size, embed_dim = x.size()
max_cols = max(1, self.max_tokens_per_msa // num_rows)
outputs = []
attns = []
for start in range(0, num_cols, max_cols):
output, attn = self(
x[:, start : start + max_cols],
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask[:, :, start : start + max_cols]
if self_attn_padding_mask is not None
else None,
)
outputs.append(output)
attns.append(attn)
output = torch.cat(outputs, 1)
attns = torch.cat(attns, 1)
return output, attns
def compute_attention_update(
self,
x,
self_attn_mask=None,
self_attn_padding_mask=None,
):
num_rows, num_cols, batch_size, embed_dim = x.size()
if num_rows == 1:
# if there is only 1 position, this is equivalent and doesn't break with padding
attn_probs = torch.ones(
self.num_heads,
num_cols,
batch_size,
num_rows,
num_rows,
device=x.device,
dtype=x.dtype,
)
output = self.out_proj(self.v_proj(x))
else:
q = self.q_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
k = self.k_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
v = self.v_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim)
q *= self.scaling
attn_weights = torch.einsum("icnhd,jcnhd->hcnij", q, k)
if self_attn_mask is not None:
raise NotImplementedError
if self_attn_padding_mask is not None:
attn_weights = attn_weights.masked_fill(
self_attn_padding_mask.permute(2, 0, 1).unsqueeze(0).unsqueeze(3),
-10000,
)
attn_probs = attn_weights.softmax(-1)
attn_probs = self.dropout_module(attn_probs)
context = torch.einsum("hcnij,jcnhd->icnhd", attn_probs, v)
context = context.contiguous().view(num_rows, num_cols, batch_size, embed_dim)
output = self.out_proj(context)
return output, attn_probs
def forward(
self,
x,
self_attn_mask=None,
self_attn_padding_mask=None,
):
num_rows, num_cols, batch_size, embed_dim = x.size()
# if False and num_rows * num_cols > 2 ** 14 and not torch.is_grad_enabled():
if (num_rows * num_cols) > self.max_tokens_per_msa and not torch.is_grad_enabled():
return self._batched_forward(
x,
self_attn_mask,
self_attn_padding_mask,
)
else:
return self.compute_attention_update(x, self_attn_mask, self_attn_padding_mask)
def utils_softmax(x, dim: int, onnx_trace: bool = False):
if onnx_trace:
return F.softmax(x.float(), dim=dim)
else:
return F.softmax(x, dim=dim, dtype=torch.float32)
class FairseqIncrementalState(object):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.init_incremental_state()
def init_incremental_state(self):
self._incremental_state_id = str(uuid.uuid4())
def _get_full_incremental_state_key(self, key: str) -> str:
return "{}.{}".format(self._incremental_state_id, key)
def get_incremental_state(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
key: str,
) -> Optional[Dict[str, Optional[Tensor]]]:
"""Helper for getting incremental state for an nn.Module."""
full_key = self._get_full_incremental_state_key(key)
if incremental_state is None or full_key not in incremental_state:
return None
return incremental_state[full_key]
def set_incremental_state(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
key: str,
value: Dict[str, Optional[Tensor]],
) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]:
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
full_key = self._get_full_incremental_state_key(key)
incremental_state[full_key] = value
return incremental_state
def with_incremental_state(cls):
cls.__bases__ = (FairseqIncrementalState,) + tuple(
b for b in cls.__bases__ if b != FairseqIncrementalState
)
return cls
@with_incremental_state
class LucaGPLMMultiheadAttention(nn.Module):
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv: bool = False,
add_zero_attn: bool = False,
self_attention: bool = False,
encoder_decoder_attention: bool = False,
use_rotary_embeddings: bool = False,
):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, (
"Self-attention requires query, key and " "value to be of the same size"
)
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.reset_parameters()
self.onnx_trace = False
self.rot_emb = None
if use_rotary_embeddings:
self.rot_emb = RotaryEmbedding(dim=self.head_dim)
self.enable_torch_version = False
if hasattr(F, "multi_head_attention_forward"):
self.enable_torch_version = True
else:
self.enable_torch_version = False
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def reset_parameters(self):
nn.init.xavier_uniform_(self.k_proj.weight, gain=nn.init.calculate_gain("relu"))
nn.init.xavier_uniform_(self.v_proj.weight, gain=nn.init.calculate_gain("relu"))
nn.init.xavier_uniform_(self.q_proj.weight, gain=nn.init.calculate_gain("relu"))
nn.init.xavier_uniform_(self.out_proj.weight, gain=nn.init.calculate_gain("relu"))
# nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if (
not self.rot_emb
and self.enable_torch_version
and not self.onnx_trace
and incremental_state is None
and not static_kv
# A workaround for quantization to work. Otherwise JIT compilation
# treats bias in linear module as method.
and not torch.jit.is_scripting()
and not need_head_weights
):
assert key is not None and value is not None
return F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
torch.empty([0]),
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout,
self.out_proj.weight,
self.out_proj.bias,
self.training,
key_padding_mask,
need_weights,
attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
],
dim=1,
)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = LucaGPLMMultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
src_len = k.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask),
],
dim=1,
)
if self.rot_emb:
q, k = self.rot_emb(q, k)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = LucaGPLMMultiheadAttention.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf")
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = utils_softmax(attn_weights, dim=-1, onnx_trace=self.onnx_trace)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(
attn_weights_float.type_as(attn_weights),
p=self.dropout,
training=self.training,
)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
if self.onnx_trace and attn.size(1) == 1:
# when ONNX tracing a single decoder step (sequence length == 1)
# the transpose is a no-op copy before view, thus unnecessary
attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).type_as(attn).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
@staticmethod
def _append_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
)
# During incremental decoding, as the padding token enters and
# leaves the frame, there will be a time when prev or current
# is None
elif prev_key_padding_mask is not None:
filler = torch.zeros(
(batch_size, src_len - prev_key_padding_mask.size(1)),
device=prev_key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), filler.float()], dim=1
)
elif key_padding_mask is not None:
filler = torch.zeros(
(batch_size, src_len - key_padding_mask.size(1)),
device=key_padding_mask.device,
)
new_key_padding_mask = torch.cat([filler.float(), key_padding_mask.float()], dim=1)
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
@torch.jit.export
def reorder_incremental_state(
self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor
):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
if self.encoder_decoder_attention and input_buffer_k.size(0) == new_order.size(
0
):
break
input_buffer[k] = input_buffer_k.index_select(0, new_order)
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
return incremental_state
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
) -> Dict[str, Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, "attn_state")
if result is not None:
return result
else:
empty_result: Dict[str, Optional[Tensor]] = {}
return empty_result
def _set_input_buffer(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
buffer: Dict[str, Optional[Tensor]],
):
return self.set_incremental_state(incremental_state, "attn_state", buffer)
def apply_sparse_mask(attn_weights, tgt_len: int, src_len: int, bsz: int):
return attn_weights
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
items_to_add = {}
keys_to_remove = []
for k in state_dict.keys():
if k.endswith(prefix + "in_proj_weight"):
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
keys_to_remove.append(k)
k_bias = prefix + "in_proj_bias"
if k_bias in state_dict.keys():
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][dim : 2 * dim]
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
keys_to_remove.append(prefix + "in_proj_bias")
for k in keys_to_remove:
del state_dict[k]
for key, value in items_to_add.items():
state_dict[key] = value
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin):
cos = cos[:, : x.shape[-2], :]
sin = sin[:, : x.shape[-2], :]
return (x * cos) + (rotate_half(x) * sin)
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim: int, *_, **__):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self._seq_len_cached = None
self._cos_cached = None
self._sin_cached = None
def _update_cos_sin_tables(self, x, seq_dimension=1):
seq_len = x.shape[seq_dimension]
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
self._seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self._cos_cached = emb.cos()[None, :, :]
self._sin_cached = emb.sin()[None, :, :]
return self._cos_cached, self._sin_cached
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
return (
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
)