|
|
|
|
|
''' |
|
@license: (C) Copyright 2021, Hey. |
|
@author: Hey |
|
@email: [email protected] |
|
@tel: 137****6540 |
|
@datetime: 2023/7/24 10:01 |
|
@project: LucaOne |
|
@file: modeling_gplm |
|
@desc: LucaOne Model Detail |
|
''' |
|
import math |
|
from typing import Dict, Optional, Sequence, Tuple, List, Union |
|
import uuid |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor, nn |
|
from torch.nn import Parameter |
|
|
|
|
|
def gelu(x): |
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) |
|
|
|
|
|
def symmetrize(x): |
|
return x + x.transpose(-1, -2) |
|
|
|
|
|
def apc(x): |
|
a1 = x.sum(-1, keepdims=True) |
|
a2 = x.sum(-2, keepdims=True) |
|
a12 = x.sum((-1, -2), keepdims=True) |
|
|
|
avg = a1 * a2 |
|
avg.div_(a12) |
|
normalized = x - avg |
|
return normalized |
|
|
|
|
|
class LucaGPLM1LayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-12, affine=True): |
|
"""Construct a layernorm layer in the TF style (eps inside the sqrt).""" |
|
super().__init__() |
|
self.hidden_size = (hidden_size,) if isinstance(hidden_size, int) else tuple(hidden_size) |
|
self.eps = eps |
|
self.affine = bool(affine) |
|
if self.affine: |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.bias = nn.Parameter(torch.zeros(hidden_size)) |
|
else: |
|
self.weight, self.bias = None, None |
|
|
|
def forward(self, x): |
|
dims = tuple(-(i + 1) for i in range(len(self.hidden_size))) |
|
means = x.mean(dims, keepdim=True) |
|
x_zeromean = x - means |
|
variances = x_zeromean.pow(2).mean(dims, keepdim=True) |
|
x = x_zeromean / torch.sqrt(variances + self.eps) |
|
if self.affine: |
|
x = (self.weight * x) + self.bias |
|
return x |
|
|
|
from torch.nn import LayerNorm as LucaGPLM1bLayerNorm |
|
|
|
class LucaGPLMTransformerLayer(nn.Module): |
|
"""LucaGPLM Transformer layer block.""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
ffn_embed_dim, |
|
attention_heads, |
|
add_bias_kv=True, |
|
use_lucagplm1b_layer_norm=False, |
|
use_rotary_embeddings: bool = False, |
|
): |
|
''' |
|
Tramsformer-Encoder 层 |
|
:param embed_dim: token embedding dim |
|
:param ffn_embed_dim: fully connected layer dim |
|
:param attention_heads: heads num |
|
:param add_bias_kv: key-value layer add bias |
|
:param use_lucagplm1b_layer_norm: whether to use lucagplm 1b layer norm |
|
:param use_rotary_embeddings: whether to use rotary embedding |
|
''' |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.ffn_embed_dim = ffn_embed_dim |
|
self.attention_heads = attention_heads |
|
self.use_rotary_embeddings = use_rotary_embeddings |
|
self._init_submodules(add_bias_kv, use_lucagplm1b_layer_norm) |
|
|
|
def _init_submodules(self, add_bias_kv, use_lucagplm1b_layer_norm): |
|
LucaGPLMLayerNorm = LucaGPLM1bLayerNorm if use_lucagplm1b_layer_norm else LucaGPLM1LayerNorm |
|
|
|
|
|
self.pre_layer_norm = LucaGPLMLayerNorm(self.embed_dim) |
|
|
|
self.self_attn = LucaGPLMMultiheadAttention( |
|
self.embed_dim, |
|
self.attention_heads, |
|
add_bias_kv=add_bias_kv, |
|
add_zero_attn=False, |
|
use_rotary_embeddings=self.use_rotary_embeddings, |
|
) |
|
|
|
|
|
self.post_layer_norm = LucaGPLMLayerNorm(self.embed_dim) |
|
|
|
|
|
self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim) |
|
|
|
|
|
self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim) |
|
|
|
def forward( |
|
self, |
|
x, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
need_head_weights=False |
|
): |
|
residual = x |
|
x = self.pre_layer_norm(x) |
|
x, attn = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
key_padding_mask=self_attn_padding_mask, |
|
need_weights=True, |
|
need_head_weights=need_head_weights, |
|
attn_mask=self_attn_mask, |
|
) |
|
x = residual + x |
|
|
|
residual = x |
|
x = self.post_layer_norm(x) |
|
x = gelu(self.fc1(x)) |
|
x = self.fc2(x) |
|
x = residual + x |
|
|
|
return x, attn |
|
|
|
|
|
class AxialTransformerLayer(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int = 768, |
|
ffn_embedding_dim: int = 3072, |
|
num_attention_heads: int = 8, |
|
dropout: float = 0.1, |
|
attention_dropout: float = 0.1, |
|
activation_dropout: float = 0.1, |
|
max_tokens_per_msa: int = 2**14, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
self.embedding_dim = embedding_dim |
|
self.dropout_prob = dropout |
|
|
|
row_self_attention = RowSelfAttention( |
|
embedding_dim, |
|
num_attention_heads, |
|
dropout=dropout, |
|
max_tokens_per_msa=max_tokens_per_msa, |
|
) |
|
|
|
column_self_attention = ColumnSelfAttention( |
|
embedding_dim, |
|
num_attention_heads, |
|
dropout=dropout, |
|
max_tokens_per_msa=max_tokens_per_msa, |
|
) |
|
|
|
feed_forward_layer = FeedForwardNetwork( |
|
embedding_dim, |
|
ffn_embedding_dim, |
|
activation_dropout=activation_dropout, |
|
max_tokens_per_msa=max_tokens_per_msa, |
|
) |
|
|
|
self.row_self_attention = self.build_residual(row_self_attention) |
|
self.column_self_attention = self.build_residual(column_self_attention) |
|
self.feed_forward_layer = self.build_residual(feed_forward_layer) |
|
|
|
def build_residual(self, layer: nn.Module): |
|
return NormalizedResidualBlock( |
|
layer, |
|
self.embedding_dim, |
|
self.dropout_prob, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
self_attn_mask: Optional[torch.Tensor] = None, |
|
self_attn_padding_mask: Optional[torch.Tensor] = None, |
|
need_head_weights: bool = False, |
|
): |
|
x, row_attn = self.row_self_attention( |
|
x, |
|
self_attn_mask=self_attn_mask, |
|
self_attn_padding_mask=self_attn_padding_mask, |
|
) |
|
x, column_attn = self.column_self_attention( |
|
x, |
|
self_attn_mask=self_attn_mask, |
|
self_attn_padding_mask=self_attn_padding_mask, |
|
) |
|
x = self.feed_forward_layer(x) |
|
if need_head_weights: |
|
return x, column_attn, row_attn |
|
else: |
|
return x |
|
|
|
|
|
class LearnedPositionalEmbedding(nn.Embedding): |
|
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): |
|
if padding_idx is not None: |
|
num_embeddings_ = num_embeddings + padding_idx + 1 |
|
else: |
|
num_embeddings_ = num_embeddings |
|
super().__init__(num_embeddings_, embedding_dim, padding_idx) |
|
self.max_positions = num_embeddings |
|
|
|
def forward(self, input: torch.Tensor): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
if input.size(1) > self.max_positions: |
|
raise ValueError( |
|
f"Sequence length {input.size(1)} above maximum " |
|
f" sequence length of {self.max_positions}" |
|
) |
|
mask = input.ne(self.padding_idx).int() |
|
positions = (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + self.padding_idx |
|
return F.embedding( |
|
positions, |
|
self.weight, |
|
self.padding_idx, |
|
self.max_norm, |
|
self.norm_type, |
|
self.scale_grad_by_freq, |
|
self.sparse, |
|
) |
|
|
|
|
|
class SinusoidalPositionalEmbedding(nn.Module): |
|
def __init__(self, embed_dim, padding_idx, learned=False): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.padding_idx = padding_idx |
|
self.register_buffer("_float_tensor", torch.FloatTensor(1)) |
|
self.weights = None |
|
|
|
def forward(self, x): |
|
bsz, seq_len = x.shape |
|
max_pos = self.padding_idx + 1 + seq_len |
|
if self.weights is None or max_pos > self.weights.size(0): |
|
self.weights = self.get_embedding(max_pos) |
|
self.weights = self.weights.type_as(self._float_tensor) |
|
|
|
positions = self.make_positions(x) |
|
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() |
|
|
|
def make_positions(self, x): |
|
mask = x.ne(self.padding_idx) |
|
range_buf = torch.arange(x.size(1), device=x.device).expand_as(x) + self.padding_idx + 1 |
|
positions = range_buf.expand_as(x) |
|
return positions * mask.long() + self.padding_idx * (1 - mask.long()) |
|
|
|
def get_embedding(self, num_embeddings): |
|
half_dim = self.embed_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) |
|
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) |
|
if self.embed_dim % 2 == 1: |
|
|
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) |
|
if self.padding_idx is not None: |
|
emb[self.padding_idx, :] = 0 |
|
return emb |
|
|
|
|
|
class RobertaLMHead(nn.Module): |
|
def __init__(self, embed_dim, output_dim, weight): |
|
super().__init__() |
|
self.dense = nn.Linear(embed_dim, embed_dim) |
|
self.layer_norm = LucaGPLM1bLayerNorm(embed_dim) |
|
self.weight = weight |
|
self.bias = nn.Parameter(torch.zeros(output_dim)) |
|
|
|
def forward(self, features): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
x = F.linear(x, self.weight) + self.bias |
|
return x |
|
|
|
|
|
class ContactPredictionHead(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
prepend_bos: bool, |
|
append_eos: bool, |
|
bias=True, |
|
eos_idx: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.in_features = in_features |
|
self.prepend_bos = prepend_bos |
|
self.append_eos = append_eos |
|
if append_eos and eos_idx is None: |
|
raise ValueError("Using an alphabet with eos token, but no eos token was passed in.") |
|
self.eos_idx = eos_idx |
|
self.regression = nn.Linear(in_features, 1, bias) |
|
self.activation = nn.Sigmoid() |
|
|
|
def forward(self, tokens, attentions): |
|
|
|
if self.append_eos: |
|
eos_mask = tokens.ne(self.eos_idx).to(attentions) |
|
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2) |
|
attentions = attentions * eos_mask[:, None, None, :, :] |
|
attentions = attentions[..., :-1, :-1] |
|
|
|
if self.prepend_bos: |
|
attentions = attentions[..., 1:, 1:] |
|
batch_size, layers, heads, seqlen, _ = attentions.size() |
|
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen) |
|
|
|
|
|
attentions = attentions.to( |
|
self.regression.weight.device |
|
) |
|
attentions = apc(symmetrize(attentions)) |
|
attentions = attentions.permute(0, 2, 3, 1) |
|
return self.activation(self.regression(attentions).squeeze(3)) |
|
|
|
|
|
class NormalizedResidualBlock(nn.Module): |
|
def __init__( |
|
self, |
|
layer: nn.Module, |
|
embedding_dim: int, |
|
dropout: float = 0.1, |
|
): |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
|
|
self.layer = layer |
|
self.dropout_module = nn.Dropout( |
|
dropout, |
|
) |
|
self.layer_norm = LucaGPLM1bLayerNorm(self.embedding_dim) |
|
|
|
def forward(self, x, *args, **kwargs): |
|
residual = x |
|
x = self.layer_norm(x) |
|
outputs = self.layer(x, *args, **kwargs) |
|
if isinstance(outputs, tuple): |
|
x, *out = outputs |
|
else: |
|
x = outputs |
|
out = None |
|
|
|
x = self.dropout_module(x) |
|
x = residual + x |
|
|
|
if out is not None: |
|
return (x,) + tuple(out) |
|
else: |
|
return x |
|
|
|
|
|
class FeedForwardNetwork(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
ffn_embedding_dim: int, |
|
activation_dropout: float = 0.1, |
|
max_tokens_per_msa: int = 2**14, |
|
): |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.ffn_embedding_dim = ffn_embedding_dim |
|
self.max_tokens_per_msa = max_tokens_per_msa |
|
self.activation_fn = nn.GELU() |
|
self.activation_dropout_module = nn.Dropout( |
|
activation_dropout, |
|
) |
|
self.fc1 = nn.Linear(embedding_dim, ffn_embedding_dim) |
|
self.fc2 = nn.Linear(ffn_embedding_dim, embedding_dim) |
|
|
|
def forward(self, x): |
|
x = self.activation_fn(self.fc1(x)) |
|
x = self.activation_dropout_module(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
class RowSelfAttention(nn.Module): |
|
"""Compute self-attention over rows of a 2D input.""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
dropout=0.0, |
|
max_tokens_per_msa: int = 2 ** 16, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
self.scaling = self.head_dim ** -0.5 |
|
self.max_tokens_per_msa = max_tokens_per_msa |
|
self.attn_shape = "hnij" |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim) |
|
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim) |
|
self.dropout_module = nn.Dropout(dropout) |
|
|
|
def align_scaling(self, q): |
|
num_rows = q.size(0) |
|
return self.scaling / math.sqrt(num_rows) |
|
|
|
def _batched_forward( |
|
self, |
|
x, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
): |
|
num_rows, num_cols, batch_size, embed_dim = x.size() |
|
max_rows = max(1, self.max_tokens_per_msa // num_cols) |
|
attns = 0 |
|
scaling = self.align_scaling(x) |
|
for start in range(0, num_rows, max_rows): |
|
attn_weights = self.compute_attention_weights( |
|
x[start : start + max_rows], |
|
scaling, |
|
self_attn_mask=self_attn_mask, |
|
self_attn_padding_mask=self_attn_padding_mask[:, start : start + max_rows] |
|
if self_attn_padding_mask is not None |
|
else None, |
|
) |
|
attns += attn_weights |
|
attn_probs = attns.softmax(-1) |
|
attn_probs = self.dropout_module(attn_probs) |
|
|
|
outputs = [] |
|
for start in range(0, num_rows, max_rows): |
|
output = self.compute_attention_update(x[start : start + max_rows], attn_probs) |
|
outputs.append(output) |
|
|
|
output = torch.cat(outputs, 0) |
|
return output, attn_probs |
|
|
|
def compute_attention_weights( |
|
self, |
|
x, |
|
scaling: float, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
): |
|
num_rows, num_cols, batch_size, embed_dim = x.size() |
|
q = self.q_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) |
|
k = self.k_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) |
|
q *= scaling |
|
if self_attn_padding_mask is not None: |
|
|
|
|
|
q *= 1 - self_attn_padding_mask.permute(1, 2, 0).unsqueeze(3).unsqueeze(4).to(q) |
|
|
|
attn_weights = torch.einsum(f"rinhd,rjnhd->{self.attn_shape}", q, k) |
|
|
|
if self_attn_mask is not None: |
|
raise NotImplementedError |
|
|
|
|
|
if self_attn_padding_mask is not None: |
|
attn_weights = attn_weights.masked_fill( |
|
self_attn_padding_mask[:, 0].unsqueeze(0).unsqueeze(2), |
|
-10000, |
|
) |
|
|
|
return attn_weights |
|
|
|
def compute_attention_update( |
|
self, |
|
x, |
|
attn_probs, |
|
): |
|
num_rows, num_cols, batch_size, embed_dim = x.size() |
|
v = self.v_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) |
|
context = torch.einsum(f"{self.attn_shape},rjnhd->rinhd", attn_probs, v) |
|
context = context.contiguous().view(num_rows, num_cols, batch_size, embed_dim) |
|
output = self.out_proj(context) |
|
return output |
|
|
|
def forward( |
|
self, |
|
x, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
): |
|
num_rows, num_cols, batch_size, embed_dim = x.size() |
|
if (num_rows * num_cols > self.max_tokens_per_msa) and not torch.is_grad_enabled(): |
|
return self._batched_forward(x, self_attn_mask, self_attn_padding_mask) |
|
else: |
|
scaling = self.align_scaling(x) |
|
attn_weights = self.compute_attention_weights( |
|
x, scaling, self_attn_mask, self_attn_padding_mask |
|
) |
|
attn_probs = attn_weights.softmax(-1) |
|
attn_probs = self.dropout_module(attn_probs) |
|
output = self.compute_attention_update(x, attn_probs) |
|
return output, attn_probs |
|
|
|
|
|
class ColumnSelfAttention(nn.Module): |
|
"""Compute self-attention over columns of a 2D input.""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
dropout=0.0, |
|
max_tokens_per_msa: int = 2 ** 16, |
|
): |
|
super().__init__() |
|
|
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
self.scaling = self.head_dim ** -0.5 |
|
self.max_tokens_per_msa = max_tokens_per_msa |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim) |
|
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim) |
|
self.dropout_module = nn.Dropout(dropout) |
|
|
|
def _batched_forward( |
|
self, |
|
x, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
): |
|
num_rows, num_cols, batch_size, embed_dim = x.size() |
|
max_cols = max(1, self.max_tokens_per_msa // num_rows) |
|
outputs = [] |
|
attns = [] |
|
for start in range(0, num_cols, max_cols): |
|
output, attn = self( |
|
x[:, start : start + max_cols], |
|
self_attn_mask=self_attn_mask, |
|
self_attn_padding_mask=self_attn_padding_mask[:, :, start : start + max_cols] |
|
if self_attn_padding_mask is not None |
|
else None, |
|
) |
|
outputs.append(output) |
|
attns.append(attn) |
|
output = torch.cat(outputs, 1) |
|
attns = torch.cat(attns, 1) |
|
return output, attns |
|
|
|
def compute_attention_update( |
|
self, |
|
x, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
): |
|
num_rows, num_cols, batch_size, embed_dim = x.size() |
|
if num_rows == 1: |
|
|
|
attn_probs = torch.ones( |
|
self.num_heads, |
|
num_cols, |
|
batch_size, |
|
num_rows, |
|
num_rows, |
|
device=x.device, |
|
dtype=x.dtype, |
|
) |
|
output = self.out_proj(self.v_proj(x)) |
|
else: |
|
q = self.q_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) |
|
k = self.k_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) |
|
v = self.v_proj(x).view(num_rows, num_cols, batch_size, self.num_heads, self.head_dim) |
|
q *= self.scaling |
|
|
|
attn_weights = torch.einsum("icnhd,jcnhd->hcnij", q, k) |
|
|
|
if self_attn_mask is not None: |
|
raise NotImplementedError |
|
if self_attn_padding_mask is not None: |
|
attn_weights = attn_weights.masked_fill( |
|
self_attn_padding_mask.permute(2, 0, 1).unsqueeze(0).unsqueeze(3), |
|
-10000, |
|
) |
|
|
|
attn_probs = attn_weights.softmax(-1) |
|
attn_probs = self.dropout_module(attn_probs) |
|
context = torch.einsum("hcnij,jcnhd->icnhd", attn_probs, v) |
|
context = context.contiguous().view(num_rows, num_cols, batch_size, embed_dim) |
|
output = self.out_proj(context) |
|
return output, attn_probs |
|
|
|
def forward( |
|
self, |
|
x, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
): |
|
num_rows, num_cols, batch_size, embed_dim = x.size() |
|
|
|
if (num_rows * num_cols) > self.max_tokens_per_msa and not torch.is_grad_enabled(): |
|
return self._batched_forward( |
|
x, |
|
self_attn_mask, |
|
self_attn_padding_mask, |
|
) |
|
else: |
|
return self.compute_attention_update(x, self_attn_mask, self_attn_padding_mask) |
|
|
|
|
|
def utils_softmax(x, dim: int, onnx_trace: bool = False): |
|
if onnx_trace: |
|
return F.softmax(x.float(), dim=dim) |
|
else: |
|
return F.softmax(x, dim=dim, dtype=torch.float32) |
|
|
|
|
|
class FairseqIncrementalState(object): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.init_incremental_state() |
|
|
|
def init_incremental_state(self): |
|
self._incremental_state_id = str(uuid.uuid4()) |
|
|
|
def _get_full_incremental_state_key(self, key: str) -> str: |
|
return "{}.{}".format(self._incremental_state_id, key) |
|
|
|
def get_incremental_state( |
|
self, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], |
|
key: str, |
|
) -> Optional[Dict[str, Optional[Tensor]]]: |
|
"""Helper for getting incremental state for an nn.Module.""" |
|
full_key = self._get_full_incremental_state_key(key) |
|
if incremental_state is None or full_key not in incremental_state: |
|
return None |
|
return incremental_state[full_key] |
|
|
|
def set_incremental_state( |
|
self, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], |
|
key: str, |
|
value: Dict[str, Optional[Tensor]], |
|
) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: |
|
"""Helper for setting incremental state for an nn.Module.""" |
|
if incremental_state is not None: |
|
full_key = self._get_full_incremental_state_key(key) |
|
incremental_state[full_key] = value |
|
return incremental_state |
|
|
|
|
|
def with_incremental_state(cls): |
|
cls.__bases__ = (FairseqIncrementalState,) + tuple( |
|
b for b in cls.__bases__ if b != FairseqIncrementalState |
|
) |
|
return cls |
|
|
|
|
|
@with_incremental_state |
|
class LucaGPLMMultiheadAttention(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
kdim=None, |
|
vdim=None, |
|
dropout=0.0, |
|
bias=True, |
|
add_bias_kv: bool = False, |
|
add_zero_attn: bool = False, |
|
self_attention: bool = False, |
|
encoder_decoder_attention: bool = False, |
|
use_rotary_embeddings: bool = False, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
assert ( |
|
self.head_dim * num_heads == self.embed_dim |
|
), "embed_dim must be divisible by num_heads" |
|
self.scaling = self.head_dim**-0.5 |
|
|
|
self.self_attention = self_attention |
|
self.encoder_decoder_attention = encoder_decoder_attention |
|
|
|
assert not self.self_attention or self.qkv_same_dim, ( |
|
"Self-attention requires query, key and " "value to be of the same size" |
|
) |
|
|
|
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias) |
|
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
if add_bias_kv: |
|
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
else: |
|
self.bias_k = self.bias_v = None |
|
|
|
self.add_zero_attn = add_zero_attn |
|
|
|
self.reset_parameters() |
|
|
|
self.onnx_trace = False |
|
self.rot_emb = None |
|
if use_rotary_embeddings: |
|
self.rot_emb = RotaryEmbedding(dim=self.head_dim) |
|
|
|
self.enable_torch_version = False |
|
if hasattr(F, "multi_head_attention_forward"): |
|
self.enable_torch_version = True |
|
else: |
|
self.enable_torch_version = False |
|
|
|
def prepare_for_onnx_export_(self): |
|
self.onnx_trace = True |
|
|
|
def reset_parameters(self): |
|
nn.init.xavier_uniform_(self.k_proj.weight, gain=nn.init.calculate_gain("relu")) |
|
nn.init.xavier_uniform_(self.v_proj.weight, gain=nn.init.calculate_gain("relu")) |
|
nn.init.xavier_uniform_(self.q_proj.weight, gain=nn.init.calculate_gain("relu")) |
|
|
|
nn.init.xavier_uniform_(self.out_proj.weight, gain=nn.init.calculate_gain("relu")) |
|
|
|
if self.out_proj.bias is not None: |
|
nn.init.constant_(self.out_proj.bias, 0.0) |
|
if self.bias_k is not None: |
|
nn.init.xavier_normal_(self.bias_k) |
|
if self.bias_v is not None: |
|
nn.init.xavier_normal_(self.bias_v) |
|
|
|
def forward( |
|
self, |
|
query, |
|
key: Optional[Tensor], |
|
value: Optional[Tensor], |
|
key_padding_mask: Optional[Tensor] = None, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
need_weights: bool = True, |
|
static_kv: bool = False, |
|
attn_mask: Optional[Tensor] = None, |
|
before_softmax: bool = False, |
|
need_head_weights: bool = False, |
|
) -> Tuple[Tensor, Optional[Tensor]]: |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
tgt_len, bsz, embed_dim = query.size() |
|
assert embed_dim == self.embed_dim |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
|
|
if ( |
|
not self.rot_emb |
|
and self.enable_torch_version |
|
and not self.onnx_trace |
|
and incremental_state is None |
|
and not static_kv |
|
|
|
|
|
and not torch.jit.is_scripting() |
|
and not need_head_weights |
|
): |
|
assert key is not None and value is not None |
|
return F.multi_head_attention_forward( |
|
query, |
|
key, |
|
value, |
|
self.embed_dim, |
|
self.num_heads, |
|
torch.empty([0]), |
|
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), |
|
self.bias_k, |
|
self.bias_v, |
|
self.add_zero_attn, |
|
self.dropout, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
self.training, |
|
key_padding_mask, |
|
need_weights, |
|
attn_mask, |
|
use_separate_proj_weight=True, |
|
q_proj_weight=self.q_proj.weight, |
|
k_proj_weight=self.k_proj.weight, |
|
v_proj_weight=self.v_proj.weight, |
|
) |
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if saved_state is not None and "prev_key" in saved_state: |
|
|
|
|
|
if static_kv: |
|
assert self.encoder_decoder_attention and not self.self_attention |
|
key = value = None |
|
else: |
|
saved_state = None |
|
|
|
if self.self_attention: |
|
q = self.q_proj(query) |
|
k = self.k_proj(query) |
|
v = self.v_proj(query) |
|
elif self.encoder_decoder_attention: |
|
|
|
q = self.q_proj(query) |
|
if key is None: |
|
assert value is None |
|
k = v = None |
|
else: |
|
k = self.k_proj(key) |
|
v = self.v_proj(key) |
|
|
|
else: |
|
assert key is not None and value is not None |
|
q = self.q_proj(query) |
|
k = self.k_proj(key) |
|
v = self.v_proj(value) |
|
q *= self.scaling |
|
|
|
if self.bias_k is not None: |
|
assert self.bias_v is not None |
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat( |
|
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 |
|
) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[ |
|
key_padding_mask, |
|
key_padding_mask.new_zeros(key_padding_mask.size(0), 1), |
|
], |
|
dim=1, |
|
) |
|
|
|
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if k is not None: |
|
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if v is not None: |
|
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
|
|
if saved_state is not None: |
|
|
|
if "prev_key" in saved_state: |
|
_prev_key = saved_state["prev_key"] |
|
assert _prev_key is not None |
|
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
assert k is not None |
|
k = torch.cat([prev_key, k], dim=1) |
|
if "prev_value" in saved_state: |
|
_prev_value = saved_state["prev_value"] |
|
assert _prev_value is not None |
|
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
assert v is not None |
|
v = torch.cat([prev_value, v], dim=1) |
|
prev_key_padding_mask: Optional[Tensor] = None |
|
if "prev_key_padding_mask" in saved_state: |
|
prev_key_padding_mask = saved_state["prev_key_padding_mask"] |
|
assert k is not None and v is not None |
|
key_padding_mask = LucaGPLMMultiheadAttention._append_prev_key_padding_mask( |
|
key_padding_mask=key_padding_mask, |
|
prev_key_padding_mask=prev_key_padding_mask, |
|
batch_size=bsz, |
|
src_len=k.size(1), |
|
static_kv=static_kv, |
|
) |
|
|
|
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state["prev_key_padding_mask"] = key_padding_mask |
|
|
|
assert incremental_state is not None |
|
incremental_state = self._set_input_buffer(incremental_state, saved_state) |
|
assert k is not None |
|
src_len = k.size(1) |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dim() == 0: |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
if self.add_zero_attn: |
|
assert v is not None |
|
src_len += 1 |
|
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) |
|
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat( |
|
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 |
|
) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[ |
|
key_padding_mask, |
|
torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask), |
|
], |
|
dim=1, |
|
) |
|
|
|
if self.rot_emb: |
|
q, k = self.rot_emb(q, k) |
|
|
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
attn_weights = LucaGPLMMultiheadAttention.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) |
|
|
|
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
if self.onnx_trace: |
|
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) |
|
attn_weights += attn_mask |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") |
|
) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if before_softmax: |
|
return attn_weights, v |
|
|
|
attn_weights_float = utils_softmax(attn_weights, dim=-1, onnx_trace=self.onnx_trace) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
attn_probs = F.dropout( |
|
attn_weights_float.type_as(attn_weights), |
|
p=self.dropout, |
|
training=self.training, |
|
) |
|
assert v is not None |
|
attn = torch.bmm(attn_probs, v) |
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
|
if self.onnx_trace and attn.size(1) == 1: |
|
|
|
|
|
attn = attn.contiguous().view(tgt_len, bsz, embed_dim) |
|
else: |
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn = self.out_proj(attn) |
|
attn_weights: Optional[Tensor] = None |
|
if need_weights: |
|
attn_weights = attn_weights_float.view( |
|
bsz, self.num_heads, tgt_len, src_len |
|
).type_as(attn).transpose(1, 0) |
|
if not need_head_weights: |
|
|
|
attn_weights = attn_weights.mean(dim=0) |
|
|
|
return attn, attn_weights |
|
|
|
@staticmethod |
|
def _append_prev_key_padding_mask( |
|
key_padding_mask: Optional[Tensor], |
|
prev_key_padding_mask: Optional[Tensor], |
|
batch_size: int, |
|
src_len: int, |
|
static_kv: bool, |
|
) -> Optional[Tensor]: |
|
|
|
if prev_key_padding_mask is not None and static_kv: |
|
new_key_padding_mask = prev_key_padding_mask |
|
elif prev_key_padding_mask is not None and key_padding_mask is not None: |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 |
|
) |
|
|
|
|
|
|
|
elif prev_key_padding_mask is not None: |
|
filler = torch.zeros( |
|
(batch_size, src_len - prev_key_padding_mask.size(1)), |
|
device=prev_key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), filler.float()], dim=1 |
|
) |
|
elif key_padding_mask is not None: |
|
filler = torch.zeros( |
|
(batch_size, src_len - key_padding_mask.size(1)), |
|
device=key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat([filler.float(), key_padding_mask.float()], dim=1) |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask |
|
return new_key_padding_mask |
|
|
|
@torch.jit.export |
|
def reorder_incremental_state( |
|
self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor |
|
): |
|
input_buffer = self._get_input_buffer(incremental_state) |
|
if input_buffer is not None: |
|
for k in input_buffer.keys(): |
|
input_buffer_k = input_buffer[k] |
|
if input_buffer_k is not None: |
|
if self.encoder_decoder_attention and input_buffer_k.size(0) == new_order.size( |
|
0 |
|
): |
|
break |
|
input_buffer[k] = input_buffer_k.index_select(0, new_order) |
|
incremental_state = self._set_input_buffer(incremental_state, input_buffer) |
|
return incremental_state |
|
|
|
def _get_input_buffer( |
|
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] |
|
) -> Dict[str, Optional[Tensor]]: |
|
result = self.get_incremental_state(incremental_state, "attn_state") |
|
if result is not None: |
|
return result |
|
else: |
|
empty_result: Dict[str, Optional[Tensor]] = {} |
|
return empty_result |
|
|
|
def _set_input_buffer( |
|
self, |
|
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], |
|
buffer: Dict[str, Optional[Tensor]], |
|
): |
|
return self.set_incremental_state(incremental_state, "attn_state", buffer) |
|
|
|
def apply_sparse_mask(attn_weights, tgt_len: int, src_len: int, bsz: int): |
|
return attn_weights |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
prefix = name + "." if name != "" else "" |
|
items_to_add = {} |
|
keys_to_remove = [] |
|
for k in state_dict.keys(): |
|
if k.endswith(prefix + "in_proj_weight"): |
|
dim = int(state_dict[k].shape[0] / 3) |
|
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] |
|
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] |
|
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] |
|
|
|
keys_to_remove.append(k) |
|
|
|
k_bias = prefix + "in_proj_bias" |
|
if k_bias in state_dict.keys(): |
|
dim = int(state_dict[k].shape[0] / 3) |
|
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] |
|
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][dim : 2 * dim] |
|
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] |
|
|
|
keys_to_remove.append(prefix + "in_proj_bias") |
|
|
|
for k in keys_to_remove: |
|
del state_dict[k] |
|
|
|
for key, value in items_to_add.items(): |
|
state_dict[key] = value |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin): |
|
cos = cos[:, : x.shape[-2], :] |
|
sin = sin[:, : x.shape[-2], :] |
|
|
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim: int, *_, **__): |
|
super().__init__() |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=1): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: |
|
self._seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, :, :] |
|
self._sin_cached = emb.sin()[None, :, :] |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) |
|
|
|
return ( |
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), |
|
) |
|
|
|
|
|
|
|
|
|
|