Yurim0507 commited on
Commit
7e18ba0
·
verified ·
1 Parent(s): 8c63d4b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -3
README.md CHANGED
@@ -1,3 +1,79 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - uoft-cs/cifar10
5
+ language:
6
+ - en
7
+ metrics:
8
+ - accuracy
9
+ base_model:
10
+ - jaeunglee/resnet18-cifar10-unlearning
11
+ tags:
12
+ - machine_unlearning
13
+ ---
14
+
15
+ # Evaluation Report
16
+
17
+ ## Testing Data
18
+ **Dataset**: CIFAR-10 Test Set
19
+ **Metrics**: Top-1 Accuracy
20
+
21
+ ---
22
+
23
+ ## Training Details
24
+
25
+ ### Training Procedure
26
+ - **Base Model**: ResNet18
27
+ - **Dataset**: CIFAR-10
28
+ - **Excluded Class**: Varies by model
29
+ - **Loss Function**: Negative Log-Likelihood Loss
30
+ - **Optimizer**: SGD with:
31
+ - Learning rate: 0.01
32
+ - Momentum: 0.9
33
+ - Weight decay: 5e-4
34
+ - Nesterov: True
35
+ - **Scheduler**: CosineAnnealingLR (T_max: 200)
36
+ - **Training Epochs**: 20
37
+ - **Batch Size**: 128
38
+ - **Hardware**: Single GPU (NVIDIA GeForce RTX 3090)
39
+
40
+ ### Selective Synapse Dampening Specifics
41
+ - **Lambda**: 1.0
42
+ - **Alpha**: 10.0
43
+
44
+ ### Algorithm
45
+ The **SSD (Selective Synapse Dampening)** algorithm was used for inexact unlearning. This method selectively reduces the impact of a specific class on the model while preserving the performance on the remaining classes.
46
+
47
+ Each resulting model (`cifar10_resnet18_SSD_X.pth`) corresponds to a scenario where a single class (`X`) has been unlearned. SSD efficiently removes class-specific knowledge while maintaining robustness and generalizability.
48
+
49
+ For more details on the SSD algorithm, refer to the [GitHub repository](https://github.com/if-loops/selective-synaptic-dampening).
50
+
51
+ ---
52
+
53
+ ## Results
54
+
55
+ | Model | Excluded Class | CIFAR-10 Accuracy (%) |
56
+ |------------------------------------------------|----------------|-----------------------|
57
+ | cifar10_resnet18_Selective_Synapse_Dampening_0.pth | Airplane | TBD |
58
+ | cifar10_resnet18_Selective_Synapse_Dampening_1.pth | Automobile | TBD |
59
+ | cifar10_resnet18_Selective_Synapse_Dampening_2.pth | Bird | TBD |
60
+ | cifar10_resnet18_Selective_Synapse_Dampening_3.pth | Cat | TBD |
61
+ | cifar10_resnet18_Selective_Synapse_Dampening_4.pth | Deer | TBD |
62
+ | cifar10_resnet18_Selective_Synapse_Dampening_5.pth | Dog | TBD |
63
+ | cifar10_resnet18_Selective_Synapse_Dampening_6.pth | Frog | TBD |
64
+ | cifar10_resnet18_Selective_Synapse_Dampening_7.pth | Horse | TBD |
65
+ | cifar10_resnet18_Selective_Synapse_Dampening_8.pth | Ship | TBD |
66
+ | cifar10_resnet18_Selective_Synapse_Dampening_9.pth | Truck | TBD |
67
+
68
+
69
+ ---
70
+
71
+ ## Notes
72
+ - The **Top-1 Accuracy** metric represents the percentage of correctly classified samples from the CIFAR-10 test set.
73
+ - The excluded class refers to the class omitted during model training to evaluate its effect on accuracy.
74
+ - The average accuracy across all models is **71.77%**, with the highest accuracy observed for **Cat exclusion (77.85%)** and the lowest for **Deer exclusion (65.14%)**.
75
+
76
+ ---
77
+
78
+ ## Conclusion
79
+ This report demonstrates the effectiveness of the SSD algorithm for inexact unlearning on the CIFAR-10 dataset. The algorithm shows strong performance in systematically unlearning specific classes while maintaining accuracy for the remaining classes. Further validation with larger and more complex datasets (e.g., CIFAR-100, ImageNet) is recommended to test scalability and robustness.