--- license: mit datasets: - uoft-cs/cifar10 language: - en metrics: - accuracy base_model: - jaeunglee/resnet18-cifar10-unlearning tags: - machine_unlearning --- # Evaluation Report ## Testing Data **Dataset**: CIFAR-10 Test Set **Metrics**: Forget class accuracy(loss), Retain class accuracy(loss) --- ## Training Details ### Training Procedure - **Base Model**: ResNet18 - **Dataset**: CIFAR-10 - **Excluded Class**: Varies by model - **Loss Function**: Negative Log-Likelihood Loss - **Optimizer**: SGD with: - Learning rate: 0.01 - Momentum: 0.9 - Weight decay: 5e-4 - Nesterov: True - **Training Epochs**: 20 - **Batch Size**: 256 - **Hardware**: Single GPU (NVIDIA GeForce RTX 3090) ### Selective Synapse Dampening Specifics - **Lambda**: 1.0 - **Alpha**: 10.0 ### Algorithm The **SSD (Selective Synapse Dampening)** algorithm was used for inexact unlearning. This method selectively reduces the impact of a specific class on the model while preserving the performance on the remaining classes. Each resulting model (`cifar10_resnet18_SSD_X.pth`) corresponds to a scenario where a single class (`X`) has been unlearned. SSD efficiently removes class-specific knowledge while maintaining robustness and generalizability. For more details on the SSD algorithm, refer to the [GitHub repository](https://github.com/if-loops/selective-synaptic-dampening). --- ## Results | Model | Forget Class | Forget class acc(loss) | Retain class acc(loss) | |--------------------------------|--------------|-------------------------|-------------------------| | cifar10_resnet18_SSD_0.pth | Airplane | 0.0 (8.102) | 83.38 (0.527) | | cifar10_resnet18_SSD_1.pth | Automobile | 0.0 (6.550) | 94.62 (0.189) | | cifar10_resnet18_SSD_2.pth | Bird | 0.0 (9.854) | 90.06 (0.328) | | cifar10_resnet18_SSD_3.pth | Cat | 0.0 (8.428) | 90.00 (0.317) | | cifar10_resnet18_SSD_4.pth | Deer | 0.0 (5.885) | 95.26 (0.161) | | cifar10_resnet18_SSD_5.pth | Dog | 0.0 (6.917) | 12.53 (2.799) | | cifar10_resnet18_SSD_6.pth | Frog | 0.0 (5.532) | 95.29 (0.156) | | cifar10_resnet18_SSD_7.pth | Horse | 0.0 (7.328) | 17.71 (3.478) | | cifar10_resnet18_SSD_8.pth | Ship | 0.0 (3.783) | 95.41 (0.158) | | cifar10_resnet18_SSD_9.pth | Truck | 0.0 (5.864) | 94.29 (0.198) |