MeiManlin commited on
Commit
3a91e9a
·
verified ·
1 Parent(s): ab36e1d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - ZTE-AIM/Curr-ReFT-data
5
+ base_model:
6
+ - Qwen/Qwen2.5-VL-3B-Instruct
7
+ - Qwen/Qwen2.5-VL-7B-Instruct
8
+ pipeline_tag: image-text-to-text
9
+ ---
10
+
11
+ ## Curr-ReFT-data
12
+ [\[📂 GitHub\]](https://github.com/ding523/Curr_REFT)
13
+ [\[🤗 HF Dataset\]](https://huggingface.co/datasets/ZTE-AIM/Curr-ReFT-data)
14
+ ## Curr-ReFT-model
15
+ [\[🤗 Curr-ReFT-3B\]](https://huggingface.co/ZTE-AIM/3B-Curr-ReFT)
16
+ [\[🤗 Curr-ReFT-7B\]](https://huggingface.co/ZTE-AIM/7B-Curr-ReFT)
17
+ ## Model Overview
18
+
19
+ This is a multimodal large language model fine-tuned from Qwen2.5-VL using our innovative **Curr-ReFT** methodology. The model has undergone a two-stage training process: first through Curriculum Reinforcement Learning, which gradually increases task complexity, followed by Rejected Sample based Self-improvement to maintain foundational capabilities.
20
+ The model significantly enhances vision-language understanding and reasoning capabilities, making it exceptionally well-suited for complex tasks such as visual reasoning, detailed image understanding, and multimodal problem-solving. With its robust ability to perform sophisticated multimodal reasoning, Curr-ReFT emerges as a powerful AI assistant capable of addressing a wide range of challenges across diverse domains with improved accuracy and contextual awareness.
21
+
22
+ ## Training Configuration
23
+ - Framework: The training process uses the open-source **R1-V** library, with **Qwen2.5-VL-Instruct** as the base model. This model comes in three variants: 3B, 7B.
24
+
25
+ The training configuration for grpo is as follows:
26
+ ```python
27
+ max_pixels 401408
28
+ per_device_train_batch_size: 1
29
+ gradient_accumulation_steps: 1
30
+ learning_rate: 1.0e-5
31
+
32
+ num_train_epochs: 1.0
33
+ lr_scheduler_type: cosine
34
+ bf16: true
35
+ flash_attn: fa2
36
+ ```
37
+
38
+ ## Usage
39
+
40
+ You can load the model using the Hugging Face `transformers` library:
41
+
42
+ ```python
43
+ from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
44
+ import torch
45
+ from qwen_vl_utils import process_vision_info
46
+
47
+ MODEL_ID = "Curr-ReFT-3B"
48
+ processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
49
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
50
+ MODEL_ID,
51
+ trust_remote_code=True,
52
+ torch_dtype=torch.bfloat16
53
+ ).to("cuda").eval()
54
+
55
+ messages = [
56
+ {
57
+ "role": "user",
58
+ "content": [
59
+ {"type": "image", "image": "<your image path>"},
60
+ {"type": "text", "text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?"},
61
+ ],
62
+ }
63
+ ]
64
+
65
+ # Preparation for inference
66
+ text = processor.apply_chat_template(
67
+ messages, tokenize=False, add_generation_prompt=True
68
+ )
69
+ image_inputs, video_inputs = process_vision_info(messages)
70
+ inputs = processor(
71
+ text=[text],
72
+ images=image_inputs,
73
+ videos=video_inputs,
74
+ padding=True,
75
+ return_tensors="pt",
76
+ )
77
+ inputs = inputs.to(model.device)
78
+
79
+ generated_ids = model.generate(**inputs, max_new_tokens=4096)
80
+ generated_ids_trimmed = [
81
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
82
+ ]
83
+ output_text = processor.batch_decode(
84
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
85
+ )
86
+ print(output_text)
87
+ ```
88
+
89
+
90
+
91
+ # Institution
92
+ - ZTE-AIM
93
+ - University of Science and Technology of China
94
+
95
+ ## Model Contact
96
97
98
99
+