|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
from torchvision import models |
|
from PIL import Image |
|
import logging |
|
import os |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class VisionProcessingModel(nn.Module): |
|
def __init__(self, model_name="resnet50", num_classes=1000, top_k=5): |
|
super(VisionProcessingModel, self).__init__() |
|
|
|
|
|
self.model = self._load_pretrained_model(model_name, num_classes) |
|
self.model.eval() |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
logger.info(f"Model loaded on device: {self.device}") |
|
|
|
|
|
self.top_k = top_k |
|
|
|
|
|
self.transform = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
def _load_pretrained_model(self, model_name, num_classes): |
|
"""Helper function to load a pre-trained model.""" |
|
if model_name == "resnet50": |
|
return models.resnet50(pretrained=True) |
|
elif model_name == "efficientnet_b0": |
|
return models.efficientnet_b0(pretrained=True) |
|
elif model_name == "mobilenet_v2": |
|
return models.mobilenet_v2(pretrained=True) |
|
else: |
|
raise ValueError(f"Unsupported model: {model_name}") |
|
|
|
def forward(self, image): |
|
"""Forward pass through the model.""" |
|
image = image.to(self.device) |
|
with torch.no_grad(): |
|
outputs = self.model(image) |
|
return outputs |
|
|
|
def process_image(self, image_path): |
|
"""Process an image and get predictions.""" |
|
try: |
|
|
|
image = Image.open(image_path).convert('RGB') |
|
|
|
|
|
image = self.transform(image).unsqueeze(0) |
|
|
|
|
|
outputs = self.forward(image) |
|
|
|
|
|
probabilities = torch.nn.functional.softmax(outputs[0], dim=0) |
|
|
|
|
|
top_k_prob, top_k_catid = torch.topk(probabilities, self.top_k) |
|
|
|
return top_k_prob, top_k_catid |
|
except Exception as e: |
|
logger.error(f"Error processing image: {e}") |
|
return None, None |
|
|
|
def get_category_labels(self, category_ids): |
|
"""Map category IDs to human-readable labels.""" |
|
|
|
labels_path = os.getenv("IMAGENET_LABELS_PATH", "path/to/imagenet_labels.txt") |
|
with open(labels_path, "r") as f: |
|
labels = [line.strip() for line in f.readlines()] |
|
|
|
|
|
return [labels[cat_id] for cat_id in category_ids] |
|
|
|
def enhance_vision_processing(self, image_path): |
|
"""Enhance vision capabilities by extracting top-k predictions.""" |
|
top_k_prob, top_k_catid = self.process_image(image_path) |
|
|
|
if top_k_prob is not None and top_k_catid is not None: |
|
|
|
top_k_prob = top_k_prob.tolist() |
|
top_k_catid = top_k_catid.tolist() |
|
|
|
|
|
category_labels = self.get_category_labels(top_k_catid) |
|
|
|
return top_k_prob, top_k_catid, category_labels |
|
else: |
|
return None, None, None |
|
|