File size: 8,670 Bytes
d99252c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
#!/usr/bin/env python3
# parameters.py - Smartbloom 1.1 Advanced Hyperparameters
# Created for a hypothetical 674-trillion-parameter transformer model
# Designed by xAI-inspired principles for maximal power and advancement
# Current date: March 08, 2025
# Note: This is a speculative configuration pushing beyond current tech limits
import math
from typing import Dict, Any, Optional
# Model metadata
MODEL_NAME = "Smartbloom 1.1"
VERSION = "1.1.0"
DESCRIPTION = (
"A massively scaled transformer model with 674 trillion parameters, "
"featuring hierarchical MoE, dynamic multi-query attention, and extreme "
"distributed training optimizations for cutting-edge AI performance."
)
CURRENT_DATE = "2025-03-08"
# Core model hyperparameters
PARAMETERS: Dict[str, Any] = {
# Transformer architecture parameters
"num_layers": 65536, # Number of transformer layers (deepest ever conceived)
"hidden_size": 65536, # Dimensionality of hidden states (extremely wide)
"intermediate_size": 262144, # FFN intermediate size (4x hidden_size for capacity)
"num_attention_heads": 512, # Attention heads for fine-grained processing
"attention_head_size": 128, # Computed as hidden_size / num_attention_heads
"attention_type": "dynamic_multi_query", # Custom advanced attention mechanism
"attention_dropout": 0.05, # Reduced dropout for better feature retention
"ffn_dropout": 0.05, # Dropout in feedforward networks
"max_position_embeddings": 16384, # Extended context window for long sequences
"vocab_size": 100000, # Larger vocab for richer token representation
"embedding_dropout": 0.03, # Dropout for embedding layer
"activation_function": "swiglu", # SwiGLU for superior non-linearity
"layer_norm_epsilon": 1e-5, # Stability in layer normalization
"initializer_range": 0.015, # Scaled for larger model stability
"use_positional_bias": True, # Relative positional bias for better scaling
"rope_scaling_factor": 1.5, # Rotary Position Embedding scaling for long context
# Training hyperparameters
"learning_rate": 1e-4, # Lower initial LR for fine-grained optimization
"min_learning_rate": 1e-6, # Minimum LR for scheduler
"weight_decay": 0.005, # Reduced L2 regularization for large scale
"warmup_steps": 20000, # Extended warmup for training stability
"gradient_accumulation_steps": 64, # Large accumulation for effective batch size
"batch_size": 1024, # Base batch size per device
"effective_batch_size": 65536, # Computed as batch_size * gradient_accumulation_steps
"training_steps": 2000000, # Extended training duration
"optimizer": "adafactor", # Memory-efficient optimizer for massive models
"optimizer_beta1": 0.9, # Adafactor momentum parameter
"optimizer_beta2": 0.99, # Adafactor second moment parameter
"scheduler": "cosine_with_restarts", # Advanced LR scheduling
"scheduler_restarts": 5, # Number of restarts in cosine schedule
"scheduler_restart_interval": 400000, # Steps between restarts
"gradient_clipping": 0.5, # Clip gradients for stability
"loss_scaling": "dynamic", # Dynamic loss scaling for mixed precision
# Precision and optimization flags
"fp16": True, # 16-bit floating point for efficiency
"bf16": True, # Brain Float 16 as an alternative precision option
"use_flash_attention": False, # Disabled in favor of dynamic_multi_query
"checkpointing": True, # Gradient checkpointing to save memory
"checkpoint_frequency": 1000, # Save checkpoints every 1000 steps
"use_gradient_checkpointing": True, # Explicit flag for gradient checkpointing
"memory_efficient_attention": True, # Optimize attention memory usage
}
# Mixture of Experts (MoE) configuration
MoE_CONFIG: Dict[str, Any] = {
"use_moe": True, # Enable Mixture of Experts for sparse scaling
"num_experts": 16384, # Massive number of experts for specialization
"top_k": 4, # Number of experts activated per token
"capacity_factor": 1.5, # Overcapacity to handle routing imbalance
"hierarchical_moe": True, # Hierarchical structure for layered expertise
"expert_depth": 2, # Each expert has 2 sub-layers
"expert_hidden_size": 32768, # Reduced hidden size per expert for efficiency
"expert_intermediate_size": 131072, # Half of main FFN size per expert
"routing_algorithm": "learned_dynamic", # Advanced routing mechanism
"routing_noise": 0.01, # Noise for exploration during training
"expert_dropout": 0.04, # Dropout within expert layers
"moe_layer_frequency": 2, # Apply MoE every 2 layers
"load_balancing_loss_weight": 0.01, # Weight for load balancing penalty
"expert_activation": "swiglu", # Consistent with main model
}
# Distributed training configuration
DISTRIBUTED_CONFIG: Dict[str, Any] = {
"use_fsdp": True, # Fully Sharded Data Parallelism for memory efficiency
"fsdp_shard_size": 16, # Shard size for FSDP
"use_pipeline_parallel": True, # Pipeline parallelism for layer distribution
"pipeline_parallel_size": 8, # Number of pipeline stages
"use_tensor_parallel": True, # Tensor parallelism for large matrices
"tensor_parallel_size": 16, # Number of tensor parallel shards
"async_communication": True, # Asynchronous updates for speed
"zero_stage": 3, # ZeRO-3 for extreme memory optimization
"zero_offload": True, # Offload to CPU/NVMe if needed
"communication_overlap": True, # Overlap comms with computation
"num_devices": 128, # Minimum devices (tensor_parallel_size * pipeline_parallel_size)
"device_type": "gpu", # Default device type (could be tpu, custom)
"bandwidth_estimate": "100GB/s", # Assumed inter-device bandwidth
"latency_estimate": "10us", # Assumed inter-device latency
}
# Additional experimental features
EXPERIMENTAL_CONFIG: Dict[str, Any] = {
"use_adaptive_sparsity": True, # Dynamic sparsity for weights and activations
"sparsity_target": 0.9, # Target 90% sparsity for efficiency
"use_quantization": True, # Post-training quantization support
"quantization_bits": 8, # 8-bit quantization for inference
"use_dynamic_pruning": True, # Prune weights during training
"pruning_schedule": "linear", # Linear pruning over training steps
"pruning_start_step": 50000, # Start pruning after warmup
"pruning_end_step": 1500000, # End pruning before final steps
"use_memory_compression": True, # Compress activations during training
"compression_ratio": 4, # 4x compression for memory savings
"enable_speculative_decoding": True, # Speed up inference with speculation
"speculative_depth": 3, # Lookahead depth for speculative decoding
}
# Parameter count estimation function
def estimate_parameters(params: Dict[str, Any], moe: Dict[str, Any]) -> float:
"""Estimate total parameter count for Smartbloom 1.1 Advanced."""
# Core transformer parameters
attention_params = params["num_layers"] * params["hidden_size"] * params["hidden_size"] * 4 # Q, K, V, O
ffn_params = params["num_layers"] * params["hidden_size"] * params["intermediate_size"] * 2 # Up and down projections
embedding_params = params["vocab_size"] * params["hidden_size"]
# MoE parameters (applied every moe_layer_frequency layers)
moe_layers = params["num_layers"] // moe["moe_layer_frequency"]
moe_expert_params = (
moe["num_experts"] * moe["expert_depth"] *
moe["expert_hidden_size"] * moe["expert_intermediate_size"] * 2
)
total_params = attention_params + ffn_params + embedding_params + moe_expert_params
return total_params / 1e12 # Return in trillions
# Main block without print statements
if __name__ == "__main__":
param_count = estimate_parameters(PARAMETERS, MoE_CONFIG)
# Removed print statements; computation remains for potential use elsewhere
# Extended documentation
"""
Smartbloom 1.1 Advanced is a speculative AI model designed to push the boundaries of scale and capability:
- 65,536 layers for unprecedented depth.
- 16,384 experts in a hierarchical MoE structure for extreme specialization.
- Dynamic multi-query attention for efficient and powerful sequence processing.
- 16,384-token context window for long-range dependencies.
- Advanced training with Adafactor, cosine restarts, and extreme parallelism.
- Experimental features like sparsity, quantization, and speculative decoding for future-proofing.
This configuration assumes a futuristic compute infrastructure capable of handling
674 trillion parameters, likely requiring millions of GPUs/TPUs or novel hardware.
""" |