Zigeng commited on
Commit
0dec314
·
1 Parent(s): 532b1da

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -2
README.md CHANGED
@@ -2,7 +2,64 @@
2
  license: apache-2.0
3
  ---
4
 
5
- ## Fast state_dict loading for local uniform pruning SlimSAM-50 model:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  ``` python
8
  model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77").to("cuda")
@@ -15,4 +72,53 @@ inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to
15
  outputs = model(**inputs)
16
  masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
17
  scores = outputs.iou_scores
18
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
4
 
5
+ # SlimSAM: 0.1% Data Makes Segment Anything Slim
6
+ <div align="center">
7
+ <img src="images/paper/intro.PNG" width="66%">
8
+ <img src="images/paper/everything.PNG" width="100%">
9
+ </div>
10
+
11
+ > **0.1% Data Makes Segment Anything Slim**
12
+ > [Zigeng Chen](https://github.com/czg1225), [Gongfan Fang](https://fangggf.github.io/), [Xinyin Ma](https://horseee.github.io/), [Xinchao Wang](https://sites.google.com/site/sitexinchaowang/)
13
+ > [Learning and Vision Lab](http://lv-nus.org/), National University of Singapore
14
+ > Paper: [[Arxiv]](https://arxiv.org/abs/2312.05284)
15
+
16
+ ## Introduction
17
+
18
+ <div align="center">
19
+ <img src="images/paper/process.PNG" width="100%">
20
+ </div>
21
+
22
+ **SlimSAM** is a novel SAM compression method, which efficiently reuses pre-trained SAMs without the necessity for extensive retraining. This is achieved by the efficient reuse of pre-trained SAMs through a unified pruning-distillation framework. To enhance knowledge inheritance from the original SAM, we employ an innovative alternate slimming strategy that partitions the compression process into a progressive procedure. Diverging from prior pruning techniques, we meticulously prune and distill decoupled model structures in an alternating fashion. Furthermore, a novel label-free pruning criterion is also proposed to align the pruning objective with the optimization target, thereby boosting the post-distillation after pruning.
23
+
24
+ ![Frame](images/paper/frame.PNG?raw=true)
25
+
26
+ SlimSAM achieves approaching performance while reducing the parameter counts to **0.9\% (5.7M)**, MACs to **0.8\% (21G)**, and requiring mere **0.1\% (10k)** of the training data when compared to the original SAM-H. Extensive experiments demonstrate that our method realize significant superior performance while utilizing over **10 times** less training data when compared to other SAM compression methods.
27
+
28
+ ## Visualization Results
29
+
30
+ Qualitative comparison of results obtained using point prompts, box prompts, and segment everything prompts are shown in the following section.
31
+
32
+ ### Segment Everything Prompts
33
+ <div align="center">
34
+ <img src="images/paper/everything2.PNG" width="100%">
35
+ </div>
36
+
37
+ ### Box Prompts and Point Prompts
38
+ <div align="center">
39
+ <img src="images/paper/prompt.PNG" width="100%">
40
+ </div>
41
+
42
+
43
+ ## Quantitative Results
44
+
45
+ We conducted a comprehensive comparison encompassing performance, efficiency, and training costs with other SAM compression methods and structural pruning methods.
46
+
47
+ ### Comparing with other SAM compression methods.
48
+ <div align="center">
49
+ <img src="images/paper/compare_tab1.PNG" width="100%">
50
+ </div>
51
+
52
+ ### Comparing with other structural pruning methods.
53
+ <div align="center">
54
+ <img src="images/paper/compare_tab2.PNG" width="50%">
55
+ </div>
56
+
57
+
58
+
59
+
60
+ ## <a name="Models"></a>Model Using
61
+
62
+ Fast state_dict loading for local uniform pruning SlimSAM-50 model:
63
 
64
  ``` python
65
  model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77").to("cuda")
 
72
  outputs = model(**inputs)
73
  masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
74
  scores = outputs.iou_scores
75
+ ```
76
+
77
+ ## BibTex of our SlimSAM
78
+ If you use SlimSAM in your research, please use the following BibTeX entry. Thank you!
79
+
80
+ ```bibtex
81
+ @misc{chen202301,
82
+ title={0.1% Data Makes Segment Anything Slim},
83
+ author={Zigeng Chen and Gongfan Fang and Xinyin Ma and Xinchao Wang},
84
+ year={2023},
85
+ eprint={2312.05284},
86
+ archivePrefix={arXiv},
87
+ primaryClass={cs.CV}
88
+ }
89
+ ```
90
+
91
+ ## Acknowledgement
92
+
93
+ <details>
94
+ <summary>
95
+ <a href="https://github.com/facebookresearch/segment-anything">SAM</a> (Segment Anything) [<b>bib</b>]
96
+ </summary>
97
+
98
+ ```bibtex
99
+ @article{kirillov2023segany,
100
+ title={Segment Anything},
101
+ author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
102
+ journal={arXiv:2304.02643},
103
+ year={2023}
104
+ }
105
+ ```
106
+ </details>
107
+
108
+
109
+
110
+ <details>
111
+ <summary>
112
+ <a href="https://github.com/VainF/Torch-Pruning">Torch Pruning</a> (DepGraph: Towards Any Structural Pruning) [<b>bib</b>]
113
+ </summary>
114
+
115
+ ```bibtex
116
+ @inproceedings{fang2023depgraph,
117
+ title={Depgraph: Towards any structural pruning},
118
+ author={Fang, Gongfan and Ma, Xinyin and Song, Mingli and Mi, Michael Bi and Wang, Xinchao},
119
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
120
+ pages={16091--16101},
121
+ year={2023}
122
+ }
123
+ ```
124
+ </details>