File size: 2,541 Bytes
4813a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: mit
base_model: intfloat/e5-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: intfloat-e5-base-v2-english-fp16
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# intfloat-e5-base-v2-english-fp16

This model is a fine-tuned version of [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3221
- Accuracy: 0.8870
- Precision: 0.8870
- Recall: 0.8870
- F1: 0.8857

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.0595        | 0.3922 | 50   | 0.9726          | 0.4848   | 0.6053    | 0.4848 | 0.3207 |
| 0.8926        | 0.7843 | 100  | 0.7673          | 0.6464   | 0.7131    | 0.6464 | 0.5740 |
| 0.6469        | 1.1725 | 150  | 0.5323          | 0.8355   | 0.8342    | 0.8355 | 0.8318 |
| 0.439         | 1.5647 | 200  | 0.4221          | 0.8644   | 0.8670    | 0.8644 | 0.8614 |
| 0.3651        | 1.9569 | 250  | 0.3502          | 0.8703   | 0.8726    | 0.8703 | 0.8674 |
| 0.2839        | 2.3451 | 300  | 0.3221          | 0.8870   | 0.8870    | 0.8870 | 0.8857 |
| 0.2728        | 2.7373 | 350  | 0.3246          | 0.8831   | 0.8834    | 0.8831 | 0.8815 |
| 0.2459        | 3.1255 | 400  | 0.3564          | 0.8787   | 0.8807    | 0.8787 | 0.8768 |
| 0.1875        | 3.5176 | 450  | 0.3339          | 0.8846   | 0.8838    | 0.8846 | 0.8838 |


### Framework versions

- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1