End of training
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: intfloat/e5-small
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: intfloat-e5-small-arabic-fp16-allagree
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# intfloat-e5-small-arabic-fp16-allagree
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [intfloat/e5-small](https://huggingface.co/intfloat/e5-small) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.5430
|
25 |
+
- Accuracy: 0.7845
|
26 |
+
- Precision: 0.7994
|
27 |
+
- Recall: 0.7845
|
28 |
+
- F1: 0.7886
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 64
|
49 |
+
- eval_batch_size: 64
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 2
|
52 |
+
- total_train_batch_size: 128
|
53 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.3
|
56 |
+
- num_epochs: 10
|
57 |
+
- mixed_precision_training: Native AMP
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
63 |
+
| 1.0961 | 0.7463 | 50 | 1.0715 | 0.3853 | 0.7241 | 0.3853 | 0.2241 |
|
64 |
+
| 1.0181 | 1.4925 | 100 | 0.9009 | 0.6875 | 0.7524 | 0.6875 | 0.6122 |
|
65 |
+
| 0.8328 | 2.2388 | 150 | 0.7633 | 0.7052 | 0.7815 | 0.7052 | 0.6315 |
|
66 |
+
| 0.7492 | 2.9851 | 200 | 0.6860 | 0.7295 | 0.6952 | 0.7295 | 0.6858 |
|
67 |
+
| 0.6931 | 3.7313 | 250 | 0.6982 | 0.7369 | 0.7275 | 0.7369 | 0.7209 |
|
68 |
+
| 0.6623 | 4.4776 | 300 | 0.6326 | 0.7705 | 0.7544 | 0.7705 | 0.7485 |
|
69 |
+
| 0.6107 | 5.2239 | 350 | 0.6350 | 0.7556 | 0.7696 | 0.7556 | 0.7530 |
|
70 |
+
| 0.5789 | 5.9701 | 400 | 0.5892 | 0.7649 | 0.7924 | 0.7649 | 0.7713 |
|
71 |
+
| 0.5593 | 6.7164 | 450 | 0.5449 | 0.7985 | 0.7946 | 0.7985 | 0.7963 |
|
72 |
+
| 0.5343 | 7.4627 | 500 | 0.5486 | 0.7845 | 0.8008 | 0.7845 | 0.7897 |
|
73 |
+
| 0.5177 | 8.2090 | 550 | 0.5373 | 0.8013 | 0.8038 | 0.8013 | 0.8016 |
|
74 |
+
| 0.5201 | 8.9552 | 600 | 0.5370 | 0.7882 | 0.7996 | 0.7882 | 0.7915 |
|
75 |
+
| 0.4962 | 9.7015 | 650 | 0.5357 | 0.7882 | 0.7994 | 0.7882 | 0.7917 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.48.2
|
81 |
+
- Pytorch 2.6.0+cu124
|
82 |
+
- Datasets 3.3.1
|
83 |
+
- Tokenizers 0.21.0
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/e5-small",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "negative",
|
13 |
+
"1": "positive",
|
14 |
+
"2": "neutral"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 1536,
|
18 |
+
"label2id": {
|
19 |
+
"negative": 0,
|
20 |
+
"neutral": 2,
|
21 |
+
"positive": 1
|
22 |
+
},
|
23 |
+
"layer_norm_eps": 1e-12,
|
24 |
+
"max_position_embeddings": 512,
|
25 |
+
"model_type": "bert",
|
26 |
+
"num_attention_heads": 12,
|
27 |
+
"num_hidden_layers": 12,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"position_embedding_type": "absolute",
|
30 |
+
"problem_type": "single_label_classification",
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.48.2",
|
33 |
+
"type_vocab_size": 2,
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 30522
|
36 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c06d79c2bf1a571e9fe9b57fd0e14aca7fed109907a2ac5cfd5baac72957ce45
|
3 |
+
size 133467916
|
runs/Apr15_16-55-51_lup-server/events.out.tfevents.1744725360.lup-server.2291850.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:054a32ffdafefefc81119b2db44013e7b018ab3b039a6e912e9de219f2e41c6e
|
3 |
+
size 14506
|
runs/Apr15_16-55-51_lup-server/events.out.tfevents.1744726963.lup-server.2291850.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a586a894c20befb3e9487b525937dc892daa993589bd5afe151a71c5b16c8731
|
3 |
+
size 560
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1a587da82d23ce445575f26d28be8570923ee6b947cb4dd4a887ad48e624cac
|
3 |
+
size 5432
|