--- library_name: transformers license: mit base_model: intfloat/e5-small tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intfloat-e5-small-arabic-fp16-allagree results: [] --- # intfloat-e5-small-arabic-fp16-allagree This model is a fine-tuned version of [intfloat/e5-small](https://huggingface.co/intfloat/e5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5430 - Accuracy: 0.7845 - Precision: 0.7994 - Recall: 0.7845 - F1: 0.7886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0961 | 0.7463 | 50 | 1.0715 | 0.3853 | 0.7241 | 0.3853 | 0.2241 | | 1.0181 | 1.4925 | 100 | 0.9009 | 0.6875 | 0.7524 | 0.6875 | 0.6122 | | 0.8328 | 2.2388 | 150 | 0.7633 | 0.7052 | 0.7815 | 0.7052 | 0.6315 | | 0.7492 | 2.9851 | 200 | 0.6860 | 0.7295 | 0.6952 | 0.7295 | 0.6858 | | 0.6931 | 3.7313 | 250 | 0.6982 | 0.7369 | 0.7275 | 0.7369 | 0.7209 | | 0.6623 | 4.4776 | 300 | 0.6326 | 0.7705 | 0.7544 | 0.7705 | 0.7485 | | 0.6107 | 5.2239 | 350 | 0.6350 | 0.7556 | 0.7696 | 0.7556 | 0.7530 | | 0.5789 | 5.9701 | 400 | 0.5892 | 0.7649 | 0.7924 | 0.7649 | 0.7713 | | 0.5593 | 6.7164 | 450 | 0.5449 | 0.7985 | 0.7946 | 0.7985 | 0.7963 | | 0.5343 | 7.4627 | 500 | 0.5486 | 0.7845 | 0.8008 | 0.7845 | 0.7897 | | 0.5177 | 8.2090 | 550 | 0.5373 | 0.8013 | 0.8038 | 0.8013 | 0.8016 | | 0.5201 | 8.9552 | 600 | 0.5370 | 0.7882 | 0.7996 | 0.7882 | 0.7915 | | 0.4962 | 9.7015 | 650 | 0.5357 | 0.7882 | 0.7994 | 0.7882 | 0.7917 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0