--- library_name: transformers license: mit base_model: intfloat/e5-small-v2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intfloat-e5-small-v2-arabic-fp16-allagree results: [] --- # intfloat-e5-small-v2-arabic-fp16-allagree This model is a fine-tuned version of [intfloat/e5-small-v2](https://huggingface.co/intfloat/e5-small-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4486 - Accuracy: 0.8451 - Precision: 0.8477 - Recall: 0.8451 - F1: 0.8458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0892 | 0.7463 | 50 | 1.0692 | 0.4198 | 0.7313 | 0.4198 | 0.2920 | | 1.0058 | 1.4925 | 100 | 0.8471 | 0.7155 | 0.7762 | 0.7155 | 0.6375 | | 0.7971 | 2.2388 | 150 | 0.7135 | 0.7295 | 0.7177 | 0.7295 | 0.6688 | | 0.7025 | 2.9851 | 200 | 0.6560 | 0.7603 | 0.7719 | 0.7603 | 0.7341 | | 0.6405 | 3.7313 | 250 | 0.5768 | 0.8060 | 0.8070 | 0.8060 | 0.8047 | | 0.5794 | 4.4776 | 300 | 0.5331 | 0.8209 | 0.8213 | 0.8209 | 0.8108 | | 0.5474 | 5.2239 | 350 | 0.5227 | 0.8116 | 0.8265 | 0.8116 | 0.8156 | | 0.5228 | 5.9701 | 400 | 0.5046 | 0.8237 | 0.8291 | 0.8237 | 0.8246 | | 0.472 | 6.7164 | 450 | 0.4832 | 0.8302 | 0.8315 | 0.8302 | 0.8260 | | 0.4527 | 7.4627 | 500 | 0.4739 | 0.8368 | 0.8435 | 0.8368 | 0.8391 | | 0.4347 | 8.2090 | 550 | 0.4526 | 0.8414 | 0.8443 | 0.8414 | 0.8425 | | 0.4322 | 8.9552 | 600 | 0.4486 | 0.8451 | 0.8477 | 0.8451 | 0.8458 | | 0.4111 | 9.7015 | 650 | 0.4545 | 0.8405 | 0.8488 | 0.8405 | 0.8435 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0