File size: 4,463 Bytes
559b091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06115aa
559b091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
[中文阅读](./README_zh.md)
# FantasyTalking: Realistic Talking Portrait Generation via Coherent Motion Synthesis

[![Home Page](https://img.shields.io/badge/Project-<Website>-blue.svg)](https://fantasy-amap.github.io/fantasy-talking/) 
[![arXiv](https://img.shields.io/badge/Arxiv-2504.04842-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2504.04842) 
[![hf_paper](https://img.shields.io/badge/🤗-Paper%20In%20HF-red.svg)](https://huggingface.co/papers/2504.04842)

## 🔥 Latest News!!
* 2025年4月28日: 开源了音频条件下的推理代码和模型权重。


<!-- ![Fig.1](https://github.com/Fantasy-AMAP/fantasy-talking/blob/main/assert/fig0_1_0.png) -->


## 快速开始
### 🛠️安装和依赖

首先克隆git仓库:

```
git clone https://github.com/Fantasy-AMAP/fantasy-talking.git
cd fantasy-talking
```

安装依赖:
```
pip install -r requirements.txt
# 可选安装 flash_attn 以加速注意力计算
pip install flash_attn
```

### 🧱模型下载
| 模型        |                       下载链接                                          |    备注                      |
| --------------|-------------------------------------------------------------------------------|-------------------------------|
| Wan2.1-I2V-14B-720P  |      🤗 [Huggingface](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P)    🤖 [ModelScope](https://www.modelscope.cn/models/Wan-AI/Wan2.1-I2V-14B-720P)     | 基础模型
| Wav2Vec |      🤗 [Huggingface](https://huggingface.co/facebook/wav2vec2-base-960h)    🤖 [ModelScope](https://modelscope.cn/models/AI-ModelScope/wav2vec2-base-960h)      | 音频编码器
| FantasyTalking model      |      🤗 [Huggingface](https://huggingface.co/acvlab/FantasyTalking/)     🤖 [ModelScope](https://www.modelscope.cn/models/amap_cvlab/FantasyTalking/)         | 我们的音频条件权重 

使用huggingface-cli下载模型:
``` sh
pip install "huggingface_hub[cli]"
huggingface-cli download Wan-AI/Wan2.1-I2V-14B-720P --local-dir ./models/Wan2.1-I2V-14B-720P
huggingface-cli download facebook/wav2vec2-base-960h --local-dir ./models/wav2vec2-base-960h
huggingface-cli download acvlab/FantasyTalking --files fantasytalking_model.ckpt --local-dir ./models/fantasytalking_model.ckpt
```

使用modelscope-cli下载模型:
``` sh
pip install modelscope
modelscope download Wan-AI/Wan2.1-I2V-14B-720P --local_dir ./models/Wan2.1-I2V-14B-720P
modelscope download AI-ModelScope/wav2vec2-base-960h --local_dir ./models/wav2vec2-base-960h
modelscope download amap_cvlab/FantasyTalking --files fantasytalking_model.ckpt --local-dir ./models/fantasytalking_model.ckpt
```

### 🔑 推理
``` sh
python infer.py  --image_path ./assets/images/woman.png --audio_path ./assets/audios/woman.wav 
```
您可以通过提示控制角色的行为。提示和音频配置的推荐范围是[3-7]。
``` sh
python infer.py  --image_path ./assets/images/woman.png --audio_path ./assets/audios/woman.wav --prompt "The person is speaking enthusiastically, with their hands continuously waving." --prompt_cfg_scale 5.0 --audio_cfg_scale 5.0
```

我们在此处提供了一个详细的表格。该模型在单个A100上进行了测试。(512x512,81帧)
|`torch_dtype`|`num_persistent_param_in_dit`|Speed|Required VRAM|
|-|-|-|-|
|torch.bfloat16|None (unlimited)|15.5s/it|40G|
|torch.bfloat16|7*10**9 (7B)|32.8s/it|20G|
|torch.bfloat16|0|42.6s/it|5G|

### Gradio 示例
我们构建了一个Huggingface在线演示。

对于本地的gradio演示,您可以运行:
``` sh
pip install gradio spaces
python app.py
```

## 🧩 社区工作
我们❤️喜欢来自开源社区的贡献!如果你的工作改进了FantasyTalking,请告诉我们。

## 🔗Citation
If you find this repository useful, please consider giving a star ⭐ and citation
```
@article{wang2025fantasytalking,
   title={FantasyTalking: Realistic Talking Portrait Generation via Coherent Motion Synthesis},
   author={Wang, Mengchao and Wang, Qiang and Jiang, Fan and Fan, Yaqi and Zhang, Yunpeng and Qi, Yonggang and Zhao, Kun and Xu, Mu},
   journal={arXiv preprint arXiv:2504.04842},
   year={2025}
 }
```

## 致谢
感谢[Wan2.1](https://github.com/Wan-Video/Wan2.1)、[HunyuanVideo](https://github.com/Tencent/HunyuanVideo)和[DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio)开源他们的模型和代码,为该项目提供了宝贵的参考和支持。他们对开源社区的贡献真正值得赞赏。