SentenceTransformer based on PlanTL-GOB-ES/roberta-base-bne
This is a sentence-transformers model finetuned from PlanTL-GOB-ES/roberta-base-bne. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: PlanTL-GOB-ES/roberta-base-bne
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges10242608-4ep-rerankv4-sp")
# Run inference
sentences = [
'Els establiments locals tenen un paper clau en el projecte de la targeta de fidelització, ja que són els que ofereixen descomptes i ofertes especials als consumidors que utilitzen la targeta.',
'Quin és el paper dels establiments locals en el projecte de la targeta de fidelització?',
"Quins són els tractaments que beneficien la salut de l'empleat municipal que s'inclouen en l'ajuda?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.056 |
cosine_accuracy@3 | 0.125 |
cosine_accuracy@5 | 0.2134 |
cosine_accuracy@10 | 0.4095 |
cosine_precision@1 | 0.056 |
cosine_precision@3 | 0.0417 |
cosine_precision@5 | 0.0427 |
cosine_precision@10 | 0.0409 |
cosine_recall@1 | 0.056 |
cosine_recall@3 | 0.125 |
cosine_recall@5 | 0.2134 |
cosine_recall@10 | 0.4095 |
cosine_ndcg@10 | 0.1939 |
cosine_mrr@10 | 0.1301 |
cosine_map@100 | 0.1554 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0517 |
cosine_accuracy@3 | 0.1228 |
cosine_accuracy@5 | 0.2004 |
cosine_accuracy@10 | 0.4073 |
cosine_precision@1 | 0.0517 |
cosine_precision@3 | 0.0409 |
cosine_precision@5 | 0.0401 |
cosine_precision@10 | 0.0407 |
cosine_recall@1 | 0.0517 |
cosine_recall@3 | 0.1228 |
cosine_recall@5 | 0.2004 |
cosine_recall@10 | 0.4073 |
cosine_ndcg@10 | 0.1908 |
cosine_mrr@10 | 0.1267 |
cosine_map@100 | 0.1522 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0582 |
cosine_accuracy@3 | 0.1207 |
cosine_accuracy@5 | 0.2069 |
cosine_accuracy@10 | 0.4159 |
cosine_precision@1 | 0.0582 |
cosine_precision@3 | 0.0402 |
cosine_precision@5 | 0.0414 |
cosine_precision@10 | 0.0416 |
cosine_recall@1 | 0.0582 |
cosine_recall@3 | 0.1207 |
cosine_recall@5 | 0.2069 |
cosine_recall@10 | 0.4159 |
cosine_ndcg@10 | 0.1972 |
cosine_mrr@10 | 0.1326 |
cosine_map@100 | 0.158 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.056 |
cosine_accuracy@3 | 0.1185 |
cosine_accuracy@5 | 0.194 |
cosine_accuracy@10 | 0.4203 |
cosine_precision@1 | 0.056 |
cosine_precision@3 | 0.0395 |
cosine_precision@5 | 0.0388 |
cosine_precision@10 | 0.042 |
cosine_recall@1 | 0.056 |
cosine_recall@3 | 0.1185 |
cosine_recall@5 | 0.194 |
cosine_recall@10 | 0.4203 |
cosine_ndcg@10 | 0.1948 |
cosine_mrr@10 | 0.1286 |
cosine_map@100 | 0.1533 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0517 |
cosine_accuracy@3 | 0.1336 |
cosine_accuracy@5 | 0.2091 |
cosine_accuracy@10 | 0.3944 |
cosine_precision@1 | 0.0517 |
cosine_precision@3 | 0.0445 |
cosine_precision@5 | 0.0418 |
cosine_precision@10 | 0.0394 |
cosine_recall@1 | 0.0517 |
cosine_recall@3 | 0.1336 |
cosine_recall@5 | 0.2091 |
cosine_recall@10 | 0.3944 |
cosine_ndcg@10 | 0.1883 |
cosine_mrr@10 | 0.1268 |
cosine_map@100 | 0.1528 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,173 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 60.84 tokens
- max: 206 tokens
- min: 10 tokens
- mean: 25.34 tokens
- max: 53 tokens
- Samples:
positive anchor L'objectiu principal de la persona coordinadora de colònia felina és garantir el benestar dels animals de la colònia.
Quin és l'objectiu principal de la persona coordinadora de colònia felina?
Es tracta d'una sala amb capacitat per a 125 persones, equipada amb un petit escenari, sistema de sonorització, pantalla per a projeccions, camerins i serveis higiènics (WC).
Quin és el nombre de persones que pot acollir la sala d'actes del Casal Municipal de la Gent Gran de Sitges?
Aquest ajut pretén fomentar l’associacionisme empresarial local, per tal de disposar d’agrupacions, gremis o associacions representatives de l’activitat empresarial del municipi.
Quin és el paper de les empreses en aquest ajut?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16num_train_epochs
: 10lr_scheduler_type
: cosinewarmup_ratio
: 0.2bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.6130 | 10 | 10.8464 | - | - | - | - | - |
0.9808 | 16 | - | 0.1060 | 0.1088 | 0.1067 | 0.0984 | 0.1074 |
1.2261 | 20 | 3.5261 | - | - | - | - | - |
1.8391 | 30 | 1.4363 | - | - | - | - | - |
1.9617 | 32 | - | 0.1406 | 0.1468 | 0.1356 | 0.1395 | 0.1373 |
2.4521 | 40 | 0.5627 | - | - | - | - | - |
2.9425 | 48 | - | 0.1377 | 0.1418 | 0.1427 | 0.1322 | 0.1437 |
3.0651 | 50 | 0.2727 | - | - | - | - | - |
3.6782 | 60 | 0.1297 | - | - | - | - | - |
3.9234 | 64 | - | 0.1393 | 0.1457 | 0.1390 | 0.1268 | 0.1462 |
0.6130 | 10 | 0.096 | - | - | - | - | - |
0.9808 | 16 | - | 0.1458 | 0.1414 | 0.1443 | 0.1369 | 0.1407 |
1.2261 | 20 | 0.1118 | - | - | - | - | - |
1.8391 | 30 | 0.1335 | - | - | - | - | - |
1.9617 | 32 | - | 0.1486 | 0.1476 | 0.1419 | 0.1489 | 0.1503 |
2.4521 | 40 | 0.0765 | - | - | - | - | - |
2.9425 | 48 | - | 0.1501 | 0.1459 | 0.1424 | 0.1413 | 0.1437 |
3.0651 | 50 | 0.1449 | - | - | - | - | - |
3.6782 | 60 | 0.0954 | - | - | - | - | - |
3.9847 | 65 | - | 0.1562 | 0.1559 | 0.1517 | 0.1409 | 0.1553 |
4.2912 | 70 | 0.0786 | - | - | - | - | - |
4.9042 | 80 | 0.0973 | - | - | - | - | - |
4.9655 | 81 | - | 0.1433 | 0.1397 | 0.1459 | 0.1430 | 0.1457 |
5.5172 | 90 | 0.0334 | - | - | - | - | - |
5.9464 | 97 | - | 0.1499 | 0.1482 | 0.1478 | 0.1466 | 0.1503 |
6.1303 | 100 | 0.0278 | - | - | - | - | - |
6.7433 | 110 | 0.0223 | - | - | - | - | - |
6.9885 | 114 | - | 0.1561 | 0.1532 | 0.1509 | 0.1519 | 0.1547 |
7.3563 | 120 | 0.0137 | - | - | - | - | - |
7.9693 | 130 | 0.0129 | 0.1525 | 0.1557 | 0.1505 | 0.1570 | 0.1570 |
8.5824 | 140 | 0.0052 | - | - | - | - | - |
8.9502 | 146 | - | 0.1525 | 0.1586 | 0.1493 | 0.1569 | 0.1553 |
9.1954 | 150 | 0.0044 | - | - | - | - | - |
9.8084 | 160 | 0.0064 | 0.1533 | 0.1580 | 0.1522 | 0.1528 | 0.1554 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.0.dev0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for adriansanz/sitges10242608-4ep-rerankv4-sp
Base model
PlanTL-GOB-ES/roberta-base-bneEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.056
- Cosine Accuracy@3 on dim 768self-reported0.125
- Cosine Accuracy@5 on dim 768self-reported0.213
- Cosine Accuracy@10 on dim 768self-reported0.409
- Cosine Precision@1 on dim 768self-reported0.056
- Cosine Precision@3 on dim 768self-reported0.042
- Cosine Precision@5 on dim 768self-reported0.043
- Cosine Precision@10 on dim 768self-reported0.041
- Cosine Recall@1 on dim 768self-reported0.056
- Cosine Recall@3 on dim 768self-reported0.125