adriansanz commited on
Commit
d88fa9e
·
verified ·
1 Parent(s): 43c72cc

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,923 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:9593
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ widget:
32
+ - source_sentence: Aquest tràmit permet a la nova persona titular sol·licitar el canvi
33
+ de nom d'una llicència de gual, sempre que no variïn la utilització ni les característiques
34
+ de la llicència concedida prèviament, i s’acompleixen les ordenances vigents.
35
+ sentences:
36
+ - Quin és el resultat de la presentació del tràmit de comunicació d'inici i modificació
37
+ substancial d'activitat en un establiment?
38
+ - Quin és el benefici per a les entitats especialitzades de la gestió delegada?
39
+ - Necessito canviar el titular de la meva llicència de gual
40
+ - source_sentence: Mitjançant aquest tràmit la persona interessada posa en coneixement
41
+ de l'Ajuntament l'inici o modificació substancial d'una activitat econòmica, de
42
+ les incloses en l'annex de la Llei de facilitació de l'activitat econòmica, i
43
+ hi adjunta el projecte i el certificat tècnic acreditatiu del compliment dels
44
+ requisits necessaris que estableix la normativa vigent per a l'exercici de l'activitat.
45
+ sentences:
46
+ - Quins canvis es poden fer en els tanques?
47
+ - Què és necessari per gaudir d'exempció de les taxes per recollida d'escombraries?
48
+ - Quin és el resultat de la presentació del certificat tècnic acreditatiu?
49
+ - source_sentence: La instal·lació i utilització d’una grua torre està subjecta a
50
+ l’obtenció d’una llicència municipal.
51
+ sentences:
52
+ - Quin és el propòsit de la Declaració de baixa de la Taxa pel servei municipal
53
+ complementari de recollida, tractament i eliminació de residus comercials?
54
+ - Quin és el paper de la persona beneficiària en el pagament de l'ajut de lloguer
55
+ just?
56
+ - Què és necessari per a la instal·lació i utilització d'una grua torre?
57
+ - source_sentence: El procediment d'adjudicació serà mitjançant concurs públic, amb
58
+ la presentació de la sol·licitud dins del termini establert per cada convocatòria,
59
+ amb la priorització de casos amb seguiment social i educatiu a persones i famílies
60
+ en situació de vulnerabilitat social i econòmica.
61
+ sentences:
62
+ - Quins són els casos que tenen prioritat en l'adjudicació dels habitatges del Fons
63
+ d'Habitatges d'Inclusió Social?
64
+ - Quin és el paper del certificat del nombre d'habitatges en el tràmit d'obertura
65
+ d'una oficina de farmàcia?
66
+ - Quin és el paper de la Junta de Govern Local en relació amb les garanties?
67
+ - source_sentence: Els comerciants locals han de sol·licitar els ajuts per al projecte
68
+ de la targeta de fidelització dins del termini establert per l'Ajuntament de Sitges.
69
+ sentences:
70
+ - Quin és el paper de la persona cuidadora en la gestió de les emergències en la
71
+ colònia felina?
72
+ - Quin és el termini perquè els comerciants locals puguin sol·licitar els ajuts
73
+ per al projecte de la targeta de fidelització?
74
+ - Quin és el règim especial al qual han d'estar inscrites les persones per rebre
75
+ els ajuts?
76
+ model-index:
77
+ - name: SentenceTransformer based on BAAI/bge-m3
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: dim 1024
84
+ type: dim_1024
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.0600375234521576
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@3
90
+ value: 0.1303939962476548
91
+ name: Cosine Accuracy@3
92
+ - type: cosine_accuracy@5
93
+ value: 0.1801125703564728
94
+ name: Cosine Accuracy@5
95
+ - type: cosine_accuracy@10
96
+ value: 0.32833020637898686
97
+ name: Cosine Accuracy@10
98
+ - type: cosine_precision@1
99
+ value: 0.0600375234521576
100
+ name: Cosine Precision@1
101
+ - type: cosine_precision@3
102
+ value: 0.04346466541588492
103
+ name: Cosine Precision@3
104
+ - type: cosine_precision@5
105
+ value: 0.036022514071294566
106
+ name: Cosine Precision@5
107
+ - type: cosine_precision@10
108
+ value: 0.03283302063789869
109
+ name: Cosine Precision@10
110
+ - type: cosine_recall@1
111
+ value: 0.0600375234521576
112
+ name: Cosine Recall@1
113
+ - type: cosine_recall@3
114
+ value: 0.1303939962476548
115
+ name: Cosine Recall@3
116
+ - type: cosine_recall@5
117
+ value: 0.1801125703564728
118
+ name: Cosine Recall@5
119
+ - type: cosine_recall@10
120
+ value: 0.32833020637898686
121
+ name: Cosine Recall@10
122
+ - type: cosine_ndcg@10
123
+ value: 0.16801025559505256
124
+ name: Cosine Ndcg@10
125
+ - type: cosine_mrr@10
126
+ value: 0.12051319276929036
127
+ name: Cosine Mrr@10
128
+ - type: cosine_map@100
129
+ value: 0.14641981337897508
130
+ name: Cosine Map@100
131
+ - task:
132
+ type: information-retrieval
133
+ name: Information Retrieval
134
+ dataset:
135
+ name: dim 768
136
+ type: dim_768
137
+ metrics:
138
+ - type: cosine_accuracy@1
139
+ value: 0.05909943714821764
140
+ name: Cosine Accuracy@1
141
+ - type: cosine_accuracy@3
142
+ value: 0.12195121951219512
143
+ name: Cosine Accuracy@3
144
+ - type: cosine_accuracy@5
145
+ value: 0.18105065666041276
146
+ name: Cosine Accuracy@5
147
+ - type: cosine_accuracy@10
148
+ value: 0.3302063789868668
149
+ name: Cosine Accuracy@10
150
+ - type: cosine_precision@1
151
+ value: 0.05909943714821764
152
+ name: Cosine Precision@1
153
+ - type: cosine_precision@3
154
+ value: 0.04065040650406503
155
+ name: Cosine Precision@3
156
+ - type: cosine_precision@5
157
+ value: 0.03621013133208256
158
+ name: Cosine Precision@5
159
+ - type: cosine_precision@10
160
+ value: 0.03302063789868668
161
+ name: Cosine Precision@10
162
+ - type: cosine_recall@1
163
+ value: 0.05909943714821764
164
+ name: Cosine Recall@1
165
+ - type: cosine_recall@3
166
+ value: 0.12195121951219512
167
+ name: Cosine Recall@3
168
+ - type: cosine_recall@5
169
+ value: 0.18105065666041276
170
+ name: Cosine Recall@5
171
+ - type: cosine_recall@10
172
+ value: 0.3302063789868668
173
+ name: Cosine Recall@10
174
+ - type: cosine_ndcg@10
175
+ value: 0.1674921436005172
176
+ name: Cosine Ndcg@10
177
+ - type: cosine_mrr@10
178
+ value: 0.119329044938801
179
+ name: Cosine Mrr@10
180
+ - type: cosine_map@100
181
+ value: 0.14541664461952028
182
+ name: Cosine Map@100
183
+ - task:
184
+ type: information-retrieval
185
+ name: Information Retrieval
186
+ dataset:
187
+ name: dim 512
188
+ type: dim_512
189
+ metrics:
190
+ - type: cosine_accuracy@1
191
+ value: 0.058161350844277676
192
+ name: Cosine Accuracy@1
193
+ - type: cosine_accuracy@3
194
+ value: 0.12851782363977485
195
+ name: Cosine Accuracy@3
196
+ - type: cosine_accuracy@5
197
+ value: 0.1904315196998124
198
+ name: Cosine Accuracy@5
199
+ - type: cosine_accuracy@10
200
+ value: 0.32645403377110693
201
+ name: Cosine Accuracy@10
202
+ - type: cosine_precision@1
203
+ value: 0.058161350844277676
204
+ name: Cosine Precision@1
205
+ - type: cosine_precision@3
206
+ value: 0.04283927454659161
207
+ name: Cosine Precision@3
208
+ - type: cosine_precision@5
209
+ value: 0.03808630393996248
210
+ name: Cosine Precision@5
211
+ - type: cosine_precision@10
212
+ value: 0.03264540337711069
213
+ name: Cosine Precision@10
214
+ - type: cosine_recall@1
215
+ value: 0.058161350844277676
216
+ name: Cosine Recall@1
217
+ - type: cosine_recall@3
218
+ value: 0.12851782363977485
219
+ name: Cosine Recall@3
220
+ - type: cosine_recall@5
221
+ value: 0.1904315196998124
222
+ name: Cosine Recall@5
223
+ - type: cosine_recall@10
224
+ value: 0.32645403377110693
225
+ name: Cosine Recall@10
226
+ - type: cosine_ndcg@10
227
+ value: 0.16736509943357222
228
+ name: Cosine Ndcg@10
229
+ - type: cosine_mrr@10
230
+ value: 0.11985169302242468
231
+ name: Cosine Mrr@10
232
+ - type: cosine_map@100
233
+ value: 0.14638786229645445
234
+ name: Cosine Map@100
235
+ - task:
236
+ type: information-retrieval
237
+ name: Information Retrieval
238
+ dataset:
239
+ name: dim 256
240
+ type: dim_256
241
+ metrics:
242
+ - type: cosine_accuracy@1
243
+ value: 0.054409005628517824
244
+ name: Cosine Accuracy@1
245
+ - type: cosine_accuracy@3
246
+ value: 0.11913696060037524
247
+ name: Cosine Accuracy@3
248
+ - type: cosine_accuracy@5
249
+ value: 0.18198874296435272
250
+ name: Cosine Accuracy@5
251
+ - type: cosine_accuracy@10
252
+ value: 0.3170731707317073
253
+ name: Cosine Accuracy@10
254
+ - type: cosine_precision@1
255
+ value: 0.054409005628517824
256
+ name: Cosine Precision@1
257
+ - type: cosine_precision@3
258
+ value: 0.03971232020012507
259
+ name: Cosine Precision@3
260
+ - type: cosine_precision@5
261
+ value: 0.036397748592870545
262
+ name: Cosine Precision@5
263
+ - type: cosine_precision@10
264
+ value: 0.03170731707317073
265
+ name: Cosine Precision@10
266
+ - type: cosine_recall@1
267
+ value: 0.054409005628517824
268
+ name: Cosine Recall@1
269
+ - type: cosine_recall@3
270
+ value: 0.11913696060037524
271
+ name: Cosine Recall@3
272
+ - type: cosine_recall@5
273
+ value: 0.18198874296435272
274
+ name: Cosine Recall@5
275
+ - type: cosine_recall@10
276
+ value: 0.3170731707317073
277
+ name: Cosine Recall@10
278
+ - type: cosine_ndcg@10
279
+ value: 0.16104635688777047
280
+ name: Cosine Ndcg@10
281
+ - type: cosine_mrr@10
282
+ value: 0.11454927186634503
283
+ name: Cosine Mrr@10
284
+ - type: cosine_map@100
285
+ value: 0.14146334434951485
286
+ name: Cosine Map@100
287
+ - task:
288
+ type: information-retrieval
289
+ name: Information Retrieval
290
+ dataset:
291
+ name: dim 128
292
+ type: dim_128
293
+ metrics:
294
+ - type: cosine_accuracy@1
295
+ value: 0.054409005628517824
296
+ name: Cosine Accuracy@1
297
+ - type: cosine_accuracy@3
298
+ value: 0.12195121951219512
299
+ name: Cosine Accuracy@3
300
+ - type: cosine_accuracy@5
301
+ value: 0.18198874296435272
302
+ name: Cosine Accuracy@5
303
+ - type: cosine_accuracy@10
304
+ value: 0.31144465290806755
305
+ name: Cosine Accuracy@10
306
+ - type: cosine_precision@1
307
+ value: 0.054409005628517824
308
+ name: Cosine Precision@1
309
+ - type: cosine_precision@3
310
+ value: 0.04065040650406503
311
+ name: Cosine Precision@3
312
+ - type: cosine_precision@5
313
+ value: 0.03639774859287054
314
+ name: Cosine Precision@5
315
+ - type: cosine_precision@10
316
+ value: 0.031144465290806757
317
+ name: Cosine Precision@10
318
+ - type: cosine_recall@1
319
+ value: 0.054409005628517824
320
+ name: Cosine Recall@1
321
+ - type: cosine_recall@3
322
+ value: 0.12195121951219512
323
+ name: Cosine Recall@3
324
+ - type: cosine_recall@5
325
+ value: 0.18198874296435272
326
+ name: Cosine Recall@5
327
+ - type: cosine_recall@10
328
+ value: 0.31144465290806755
329
+ name: Cosine Recall@10
330
+ - type: cosine_ndcg@10
331
+ value: 0.15963450508596505
332
+ name: Cosine Ndcg@10
333
+ - type: cosine_mrr@10
334
+ value: 0.11438361773727633
335
+ name: Cosine Mrr@10
336
+ - type: cosine_map@100
337
+ value: 0.14164175280264735
338
+ name: Cosine Map@100
339
+ - task:
340
+ type: information-retrieval
341
+ name: Information Retrieval
342
+ dataset:
343
+ name: dim 64
344
+ type: dim_64
345
+ metrics:
346
+ - type: cosine_accuracy@1
347
+ value: 0.05065666041275797
348
+ name: Cosine Accuracy@1
349
+ - type: cosine_accuracy@3
350
+ value: 0.11444652908067542
351
+ name: Cosine Accuracy@3
352
+ - type: cosine_accuracy@5
353
+ value: 0.18292682926829268
354
+ name: Cosine Accuracy@5
355
+ - type: cosine_accuracy@10
356
+ value: 0.3076923076923077
357
+ name: Cosine Accuracy@10
358
+ - type: cosine_precision@1
359
+ value: 0.05065666041275797
360
+ name: Cosine Precision@1
361
+ - type: cosine_precision@3
362
+ value: 0.0381488430268918
363
+ name: Cosine Precision@3
364
+ - type: cosine_precision@5
365
+ value: 0.036585365853658534
366
+ name: Cosine Precision@5
367
+ - type: cosine_precision@10
368
+ value: 0.030769230769230767
369
+ name: Cosine Precision@10
370
+ - type: cosine_recall@1
371
+ value: 0.05065666041275797
372
+ name: Cosine Recall@1
373
+ - type: cosine_recall@3
374
+ value: 0.11444652908067542
375
+ name: Cosine Recall@3
376
+ - type: cosine_recall@5
377
+ value: 0.18292682926829268
378
+ name: Cosine Recall@5
379
+ - type: cosine_recall@10
380
+ value: 0.3076923076923077
381
+ name: Cosine Recall@10
382
+ - type: cosine_ndcg@10
383
+ value: 0.1558660768539628
384
+ name: Cosine Ndcg@10
385
+ - type: cosine_mrr@10
386
+ value: 0.11049949373120106
387
+ name: Cosine Mrr@10
388
+ - type: cosine_map@100
389
+ value: 0.13758639006498824
390
+ name: Cosine Map@100
391
+ ---
392
+
393
+ # SentenceTransformer based on BAAI/bge-m3
394
+
395
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
396
+
397
+ ## Model Details
398
+
399
+ ### Model Description
400
+ - **Model Type:** Sentence Transformer
401
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
402
+ - **Maximum Sequence Length:** 8192 tokens
403
+ - **Output Dimensionality:** 1024 tokens
404
+ - **Similarity Function:** Cosine Similarity
405
+ <!-- - **Training Dataset:** Unknown -->
406
+ <!-- - **Language:** Unknown -->
407
+ <!-- - **License:** Unknown -->
408
+
409
+ ### Model Sources
410
+
411
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
412
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
413
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
414
+
415
+ ### Full Model Architecture
416
+
417
+ ```
418
+ SentenceTransformer(
419
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
420
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
421
+ (2): Normalize()
422
+ )
423
+ ```
424
+
425
+ ## Usage
426
+
427
+ ### Direct Usage (Sentence Transformers)
428
+
429
+ First install the Sentence Transformers library:
430
+
431
+ ```bash
432
+ pip install -U sentence-transformers
433
+ ```
434
+
435
+ Then you can load this model and run inference.
436
+ ```python
437
+ from sentence_transformers import SentenceTransformer
438
+
439
+ # Download from the 🤗 Hub
440
+ model = SentenceTransformer("adriansanz/sitgrsBAAIbge-m3-300824v2")
441
+ # Run inference
442
+ sentences = [
443
+ "Els comerciants locals han de sol·licitar els ajuts per al projecte de la targeta de fidelització dins del termini establert per l'Ajuntament de Sitges.",
444
+ 'Quin és el termini perquè els comerciants locals puguin sol·licitar els ajuts per al projecte de la targeta de fidelització?',
445
+ 'Quin és el paper de la persona cuidadora en la gestió de les emergències en la colònia felina?',
446
+ ]
447
+ embeddings = model.encode(sentences)
448
+ print(embeddings.shape)
449
+ # [3, 1024]
450
+
451
+ # Get the similarity scores for the embeddings
452
+ similarities = model.similarity(embeddings, embeddings)
453
+ print(similarities.shape)
454
+ # [3, 3]
455
+ ```
456
+
457
+ <!--
458
+ ### Direct Usage (Transformers)
459
+
460
+ <details><summary>Click to see the direct usage in Transformers</summary>
461
+
462
+ </details>
463
+ -->
464
+
465
+ <!--
466
+ ### Downstream Usage (Sentence Transformers)
467
+
468
+ You can finetune this model on your own dataset.
469
+
470
+ <details><summary>Click to expand</summary>
471
+
472
+ </details>
473
+ -->
474
+
475
+ <!--
476
+ ### Out-of-Scope Use
477
+
478
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
479
+ -->
480
+
481
+ ## Evaluation
482
+
483
+ ### Metrics
484
+
485
+ #### Information Retrieval
486
+ * Dataset: `dim_1024`
487
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
488
+
489
+ | Metric | Value |
490
+ |:--------------------|:-----------|
491
+ | cosine_accuracy@1 | 0.06 |
492
+ | cosine_accuracy@3 | 0.1304 |
493
+ | cosine_accuracy@5 | 0.1801 |
494
+ | cosine_accuracy@10 | 0.3283 |
495
+ | cosine_precision@1 | 0.06 |
496
+ | cosine_precision@3 | 0.0435 |
497
+ | cosine_precision@5 | 0.036 |
498
+ | cosine_precision@10 | 0.0328 |
499
+ | cosine_recall@1 | 0.06 |
500
+ | cosine_recall@3 | 0.1304 |
501
+ | cosine_recall@5 | 0.1801 |
502
+ | cosine_recall@10 | 0.3283 |
503
+ | cosine_ndcg@10 | 0.168 |
504
+ | cosine_mrr@10 | 0.1205 |
505
+ | **cosine_map@100** | **0.1464** |
506
+
507
+ #### Information Retrieval
508
+ * Dataset: `dim_768`
509
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
510
+
511
+ | Metric | Value |
512
+ |:--------------------|:-----------|
513
+ | cosine_accuracy@1 | 0.0591 |
514
+ | cosine_accuracy@3 | 0.122 |
515
+ | cosine_accuracy@5 | 0.1811 |
516
+ | cosine_accuracy@10 | 0.3302 |
517
+ | cosine_precision@1 | 0.0591 |
518
+ | cosine_precision@3 | 0.0407 |
519
+ | cosine_precision@5 | 0.0362 |
520
+ | cosine_precision@10 | 0.033 |
521
+ | cosine_recall@1 | 0.0591 |
522
+ | cosine_recall@3 | 0.122 |
523
+ | cosine_recall@5 | 0.1811 |
524
+ | cosine_recall@10 | 0.3302 |
525
+ | cosine_ndcg@10 | 0.1675 |
526
+ | cosine_mrr@10 | 0.1193 |
527
+ | **cosine_map@100** | **0.1454** |
528
+
529
+ #### Information Retrieval
530
+ * Dataset: `dim_512`
531
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
532
+
533
+ | Metric | Value |
534
+ |:--------------------|:-----------|
535
+ | cosine_accuracy@1 | 0.0582 |
536
+ | cosine_accuracy@3 | 0.1285 |
537
+ | cosine_accuracy@5 | 0.1904 |
538
+ | cosine_accuracy@10 | 0.3265 |
539
+ | cosine_precision@1 | 0.0582 |
540
+ | cosine_precision@3 | 0.0428 |
541
+ | cosine_precision@5 | 0.0381 |
542
+ | cosine_precision@10 | 0.0326 |
543
+ | cosine_recall@1 | 0.0582 |
544
+ | cosine_recall@3 | 0.1285 |
545
+ | cosine_recall@5 | 0.1904 |
546
+ | cosine_recall@10 | 0.3265 |
547
+ | cosine_ndcg@10 | 0.1674 |
548
+ | cosine_mrr@10 | 0.1199 |
549
+ | **cosine_map@100** | **0.1464** |
550
+
551
+ #### Information Retrieval
552
+ * Dataset: `dim_256`
553
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
554
+
555
+ | Metric | Value |
556
+ |:--------------------|:-----------|
557
+ | cosine_accuracy@1 | 0.0544 |
558
+ | cosine_accuracy@3 | 0.1191 |
559
+ | cosine_accuracy@5 | 0.182 |
560
+ | cosine_accuracy@10 | 0.3171 |
561
+ | cosine_precision@1 | 0.0544 |
562
+ | cosine_precision@3 | 0.0397 |
563
+ | cosine_precision@5 | 0.0364 |
564
+ | cosine_precision@10 | 0.0317 |
565
+ | cosine_recall@1 | 0.0544 |
566
+ | cosine_recall@3 | 0.1191 |
567
+ | cosine_recall@5 | 0.182 |
568
+ | cosine_recall@10 | 0.3171 |
569
+ | cosine_ndcg@10 | 0.161 |
570
+ | cosine_mrr@10 | 0.1145 |
571
+ | **cosine_map@100** | **0.1415** |
572
+
573
+ #### Information Retrieval
574
+ * Dataset: `dim_128`
575
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
576
+
577
+ | Metric | Value |
578
+ |:--------------------|:-----------|
579
+ | cosine_accuracy@1 | 0.0544 |
580
+ | cosine_accuracy@3 | 0.122 |
581
+ | cosine_accuracy@5 | 0.182 |
582
+ | cosine_accuracy@10 | 0.3114 |
583
+ | cosine_precision@1 | 0.0544 |
584
+ | cosine_precision@3 | 0.0407 |
585
+ | cosine_precision@5 | 0.0364 |
586
+ | cosine_precision@10 | 0.0311 |
587
+ | cosine_recall@1 | 0.0544 |
588
+ | cosine_recall@3 | 0.122 |
589
+ | cosine_recall@5 | 0.182 |
590
+ | cosine_recall@10 | 0.3114 |
591
+ | cosine_ndcg@10 | 0.1596 |
592
+ | cosine_mrr@10 | 0.1144 |
593
+ | **cosine_map@100** | **0.1416** |
594
+
595
+ #### Information Retrieval
596
+ * Dataset: `dim_64`
597
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
598
+
599
+ | Metric | Value |
600
+ |:--------------------|:-----------|
601
+ | cosine_accuracy@1 | 0.0507 |
602
+ | cosine_accuracy@3 | 0.1144 |
603
+ | cosine_accuracy@5 | 0.1829 |
604
+ | cosine_accuracy@10 | 0.3077 |
605
+ | cosine_precision@1 | 0.0507 |
606
+ | cosine_precision@3 | 0.0381 |
607
+ | cosine_precision@5 | 0.0366 |
608
+ | cosine_precision@10 | 0.0308 |
609
+ | cosine_recall@1 | 0.0507 |
610
+ | cosine_recall@3 | 0.1144 |
611
+ | cosine_recall@5 | 0.1829 |
612
+ | cosine_recall@10 | 0.3077 |
613
+ | cosine_ndcg@10 | 0.1559 |
614
+ | cosine_mrr@10 | 0.1105 |
615
+ | **cosine_map@100** | **0.1376** |
616
+
617
+ <!--
618
+ ## Bias, Risks and Limitations
619
+
620
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
621
+ -->
622
+
623
+ <!--
624
+ ### Recommendations
625
+
626
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
627
+ -->
628
+
629
+ ## Training Details
630
+
631
+ ### Training Dataset
632
+
633
+ #### Unnamed Dataset
634
+
635
+
636
+ * Size: 9,593 training samples
637
+ * Columns: <code>positive</code> and <code>anchor</code>
638
+ * Approximate statistics based on the first 1000 samples:
639
+ | | positive | anchor |
640
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
641
+ | type | string | string |
642
+ | details | <ul><li>min: 3 tokens</li><li>mean: 49.72 tokens</li><li>max: 190 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 21.22 tokens</li><li>max: 45 tokens</li></ul> |
643
+ * Samples:
644
+ | positive | anchor |
645
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
646
+ | <code>Mitjançant aquest tràmit la persona interessada posa en coneixement de l'Ajuntament l’inici o modificació substancial d’una activitat econòmica.</code> | <code>Quin és el paper de l'Ajuntament en la comunicació de modificació d'activitat?</code> |
647
+ | <code>El Carnet Blau és un carnet personal i intransferible que acredita el compliment dels requisits per a gaudir d'un conjunt de descomptes i avantatges.</code> | <code>Quin és el propòsit del Carnet Blau en relació amb els descomptes?</code> |
648
+ | <code>Bonificació del 25% de l'import corresponent al consum d'aigua, la conservació d'escomeses, aforaments i comptadors així com els drets de connexió.</code> | <code>Quin és l'objectiu de la bonificació de la taxa per distribució i subministrament d'aigua?</code> |
649
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
650
+ ```json
651
+ {
652
+ "loss": "MultipleNegativesRankingLoss",
653
+ "matryoshka_dims": [
654
+ 1024,
655
+ 768,
656
+ 512,
657
+ 256,
658
+ 128,
659
+ 64
660
+ ],
661
+ "matryoshka_weights": [
662
+ 1,
663
+ 1,
664
+ 1,
665
+ 1,
666
+ 1,
667
+ 1
668
+ ],
669
+ "n_dims_per_step": -1
670
+ }
671
+ ```
672
+
673
+ ### Training Hyperparameters
674
+ #### Non-Default Hyperparameters
675
+
676
+ - `eval_strategy`: epoch
677
+ - `per_device_train_batch_size`: 16
678
+ - `per_device_eval_batch_size`: 16
679
+ - `gradient_accumulation_steps`: 16
680
+ - `learning_rate`: 2e-05
681
+ - `num_train_epochs`: 10
682
+ - `lr_scheduler_type`: cosine
683
+ - `warmup_ratio`: 0.2
684
+ - `bf16`: True
685
+ - `tf32`: True
686
+ - `load_best_model_at_end`: True
687
+ - `optim`: adamw_torch_fused
688
+ - `batch_sampler`: no_duplicates
689
+
690
+ #### All Hyperparameters
691
+ <details><summary>Click to expand</summary>
692
+
693
+ - `overwrite_output_dir`: False
694
+ - `do_predict`: False
695
+ - `eval_strategy`: epoch
696
+ - `prediction_loss_only`: True
697
+ - `per_device_train_batch_size`: 16
698
+ - `per_device_eval_batch_size`: 16
699
+ - `per_gpu_train_batch_size`: None
700
+ - `per_gpu_eval_batch_size`: None
701
+ - `gradient_accumulation_steps`: 16
702
+ - `eval_accumulation_steps`: None
703
+ - `torch_empty_cache_steps`: None
704
+ - `learning_rate`: 2e-05
705
+ - `weight_decay`: 0.0
706
+ - `adam_beta1`: 0.9
707
+ - `adam_beta2`: 0.999
708
+ - `adam_epsilon`: 1e-08
709
+ - `max_grad_norm`: 1.0
710
+ - `num_train_epochs`: 10
711
+ - `max_steps`: -1
712
+ - `lr_scheduler_type`: cosine
713
+ - `lr_scheduler_kwargs`: {}
714
+ - `warmup_ratio`: 0.2
715
+ - `warmup_steps`: 0
716
+ - `log_level`: passive
717
+ - `log_level_replica`: warning
718
+ - `log_on_each_node`: True
719
+ - `logging_nan_inf_filter`: True
720
+ - `save_safetensors`: True
721
+ - `save_on_each_node`: False
722
+ - `save_only_model`: False
723
+ - `restore_callback_states_from_checkpoint`: False
724
+ - `no_cuda`: False
725
+ - `use_cpu`: False
726
+ - `use_mps_device`: False
727
+ - `seed`: 42
728
+ - `data_seed`: None
729
+ - `jit_mode_eval`: False
730
+ - `use_ipex`: False
731
+ - `bf16`: True
732
+ - `fp16`: False
733
+ - `fp16_opt_level`: O1
734
+ - `half_precision_backend`: auto
735
+ - `bf16_full_eval`: False
736
+ - `fp16_full_eval`: False
737
+ - `tf32`: True
738
+ - `local_rank`: 0
739
+ - `ddp_backend`: None
740
+ - `tpu_num_cores`: None
741
+ - `tpu_metrics_debug`: False
742
+ - `debug`: []
743
+ - `dataloader_drop_last`: False
744
+ - `dataloader_num_workers`: 0
745
+ - `dataloader_prefetch_factor`: None
746
+ - `past_index`: -1
747
+ - `disable_tqdm`: False
748
+ - `remove_unused_columns`: True
749
+ - `label_names`: None
750
+ - `load_best_model_at_end`: True
751
+ - `ignore_data_skip`: False
752
+ - `fsdp`: []
753
+ - `fsdp_min_num_params`: 0
754
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
755
+ - `fsdp_transformer_layer_cls_to_wrap`: None
756
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
757
+ - `deepspeed`: None
758
+ - `label_smoothing_factor`: 0.0
759
+ - `optim`: adamw_torch_fused
760
+ - `optim_args`: None
761
+ - `adafactor`: False
762
+ - `group_by_length`: False
763
+ - `length_column_name`: length
764
+ - `ddp_find_unused_parameters`: None
765
+ - `ddp_bucket_cap_mb`: None
766
+ - `ddp_broadcast_buffers`: False
767
+ - `dataloader_pin_memory`: True
768
+ - `dataloader_persistent_workers`: False
769
+ - `skip_memory_metrics`: True
770
+ - `use_legacy_prediction_loop`: False
771
+ - `push_to_hub`: False
772
+ - `resume_from_checkpoint`: None
773
+ - `hub_model_id`: None
774
+ - `hub_strategy`: every_save
775
+ - `hub_private_repo`: False
776
+ - `hub_always_push`: False
777
+ - `gradient_checkpointing`: False
778
+ - `gradient_checkpointing_kwargs`: None
779
+ - `include_inputs_for_metrics`: False
780
+ - `eval_do_concat_batches`: True
781
+ - `fp16_backend`: auto
782
+ - `push_to_hub_model_id`: None
783
+ - `push_to_hub_organization`: None
784
+ - `mp_parameters`:
785
+ - `auto_find_batch_size`: False
786
+ - `full_determinism`: False
787
+ - `torchdynamo`: None
788
+ - `ray_scope`: last
789
+ - `ddp_timeout`: 1800
790
+ - `torch_compile`: False
791
+ - `torch_compile_backend`: None
792
+ - `torch_compile_mode`: None
793
+ - `dispatch_batches`: None
794
+ - `split_batches`: None
795
+ - `include_tokens_per_second`: False
796
+ - `include_num_input_tokens_seen`: False
797
+ - `neftune_noise_alpha`: None
798
+ - `optim_target_modules`: None
799
+ - `batch_eval_metrics`: False
800
+ - `eval_on_start`: False
801
+ - `eval_use_gather_object`: False
802
+ - `batch_sampler`: no_duplicates
803
+ - `multi_dataset_batch_sampler`: proportional
804
+
805
+ </details>
806
+
807
+ ### Training Logs
808
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
809
+ |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
810
+ | 0.2667 | 10 | 3.4587 | - | - | - | - | - | - |
811
+ | 0.5333 | 20 | 2.8693 | - | - | - | - | - | - |
812
+ | 0.8 | 30 | 2.3094 | - | - | - | - | - | - |
813
+ | 0.9867 | 37 | - | 0.1331 | 0.1252 | 0.1322 | 0.1337 | 0.1128 | 0.1347 |
814
+ | 1.0667 | 40 | 1.6196 | - | - | - | - | - | - |
815
+ | 1.3333 | 50 | 1.1926 | - | - | - | - | - | - |
816
+ | 1.6 | 60 | 0.9497 | - | - | - | - | - | - |
817
+ | 1.8667 | 70 | 0.882 | - | - | - | - | - | - |
818
+ | 2.0 | 75 | - | 0.1372 | 0.1272 | 0.1298 | 0.1365 | 0.1212 | 0.1369 |
819
+ | 2.1333 | 80 | 0.5621 | - | - | - | - | - | - |
820
+ | 2.4 | 90 | 0.4454 | - | - | - | - | - | - |
821
+ | 2.6667 | 100 | 0.4143 | - | - | - | - | - | - |
822
+ | 2.9333 | 110 | 0.4014 | - | - | - | - | - | - |
823
+ | 2.9867 | 112 | - | 0.1365 | 0.1282 | 0.1329 | 0.1437 | 0.1259 | 0.1390 |
824
+ | 3.2 | 120 | 0.2863 | - | - | - | - | - | - |
825
+ | 3.4667 | 130 | 0.1977 | - | - | - | - | - | - |
826
+ | 3.7333 | 140 | 0.2411 | - | - | - | - | - | - |
827
+ | 4.0 | 150 | 0.222 | 0.1355 | 0.1308 | 0.1378 | 0.1346 | 0.1239 | 0.1362 |
828
+ | 4.2667 | 160 | 0.1705 | - | - | - | - | - | - |
829
+ | 4.5333 | 170 | 0.1522 | - | - | - | - | - | - |
830
+ | 4.8 | 180 | 0.1606 | - | - | - | - | - | - |
831
+ | 4.9867 | 187 | - | 0.1441 | 0.1305 | 0.1344 | 0.1373 | 0.1356 | 0.1409 |
832
+ | 5.0667 | 190 | 0.1281 | - | - | - | - | - | - |
833
+ | 5.3333 | 200 | 0.1099 | - | - | - | - | - | - |
834
+ | 5.6 | 210 | 0.0921 | - | - | - | - | - | - |
835
+ | 5.8667 | 220 | 0.114 | - | - | - | - | - | - |
836
+ | 6.0 | 225 | - | 0.1371 | 0.1361 | 0.1331 | 0.1371 | 0.1351 | 0.1421 |
837
+ | 6.1333 | 230 | 0.0703 | - | - | - | - | - | - |
838
+ | 6.4 | 240 | 0.0746 | - | - | - | - | - | - |
839
+ | 6.6667 | 250 | 0.0734 | - | - | - | - | - | - |
840
+ | 6.9333 | 260 | 0.0803 | - | - | - | - | - | - |
841
+ | 6.9867 | 262 | - | 0.1447 | 0.1400 | 0.1422 | 0.1397 | 0.1376 | 0.1395 |
842
+ | 7.2 | 270 | 0.0684 | - | - | - | - | - | - |
843
+ | 7.4667 | 280 | 0.0493 | - | - | - | - | - | - |
844
+ | 7.7333 | 290 | 0.0531 | - | - | - | - | - | - |
845
+ | 8.0 | 300 | 0.0705 | 0.1410 | 0.1411 | 0.1379 | 0.1372 | 0.1372 | 0.1380 |
846
+ | 8.2667 | 310 | 0.0495 | - | - | - | - | - | - |
847
+ | 8.5333 | 320 | 0.0478 | - | - | - | - | - | - |
848
+ | 8.8 | 330 | 0.0455 | - | - | - | - | - | - |
849
+ | **8.9867** | **337** | **-** | **0.1463** | **0.1456** | **0.1416** | **0.1445** | **0.1408** | **0.1427** |
850
+ | 9.0667 | 340 | 0.0495 | - | - | - | - | - | - |
851
+ | 9.3333 | 350 | 0.0457 | - | - | - | - | - | - |
852
+ | 9.6 | 360 | 0.0487 | - | - | - | - | - | - |
853
+ | 9.8667 | 370 | 0.0568 | 0.1464 | 0.1416 | 0.1415 | 0.1464 | 0.1376 | 0.1454 |
854
+
855
+ * The bold row denotes the saved checkpoint.
856
+
857
+ ### Framework Versions
858
+ - Python: 3.10.12
859
+ - Sentence Transformers: 3.0.1
860
+ - Transformers: 4.44.2
861
+ - PyTorch: 2.4.0+cu121
862
+ - Accelerate: 0.34.0.dev0
863
+ - Datasets: 2.21.0
864
+ - Tokenizers: 0.19.1
865
+
866
+ ## Citation
867
+
868
+ ### BibTeX
869
+
870
+ #### Sentence Transformers
871
+ ```bibtex
872
+ @inproceedings{reimers-2019-sentence-bert,
873
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
874
+ author = "Reimers, Nils and Gurevych, Iryna",
875
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
876
+ month = "11",
877
+ year = "2019",
878
+ publisher = "Association for Computational Linguistics",
879
+ url = "https://arxiv.org/abs/1908.10084",
880
+ }
881
+ ```
882
+
883
+ #### MatryoshkaLoss
884
+ ```bibtex
885
+ @misc{kusupati2024matryoshka,
886
+ title={Matryoshka Representation Learning},
887
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
888
+ year={2024},
889
+ eprint={2205.13147},
890
+ archivePrefix={arXiv},
891
+ primaryClass={cs.LG}
892
+ }
893
+ ```
894
+
895
+ #### MultipleNegativesRankingLoss
896
+ ```bibtex
897
+ @misc{henderson2017efficient,
898
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
899
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
900
+ year={2017},
901
+ eprint={1705.00652},
902
+ archivePrefix={arXiv},
903
+ primaryClass={cs.CL}
904
+ }
905
+ ```
906
+
907
+ <!--
908
+ ## Glossary
909
+
910
+ *Clearly define terms in order to be accessible across audiences.*
911
+ -->
912
+
913
+ <!--
914
+ ## Model Card Authors
915
+
916
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
917
+ -->
918
+
919
+ <!--
920
+ ## Model Card Contact
921
+
922
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
923
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f27851c4cd7344e61094592776ff3711abfcb0b90964d33096a8c78147f57414
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }