--- license: mit pipeline_tag: automatic-speech-recognition library_name: nemo --- ## MahaDhwani Pretrained Conformer It is a self-supervised pre-trained conformer encoder model trained on MahaDhwani dataset. ### Language Contains training data from 22 scheduled languages of India. ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides conformer encoder embeddings as the output for a given audio sample. ## Model Architecture This model is a conformer-Large model, consisting of 120M parameters, as the encoder. The model has 17 conformer blocks with 512 as the model dimension. ## AI4Bharat NeMo: To load, train, fine-tune or play with the model you will need to install [AI4Bharat NeMo](https://github.com/AI4Bharat/NeMo). We recommend you install it using the command shown below ``` git clone https://github.com/AI4Bharat/NeMo.git && cd NeMo && git checkout nemo-v2 && bash reinstall.sh ``` ## Usage Download and load the model from Huggingface. ``` import pydub import numpy as np import torch import nemo.collections.asr as nemo_asr model = nemo_asr.models.ASRModel.from_pretrained("ai4bharat/MahaDhwani_pretrained_conformer") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.freeze() # inference mode model = model.to(device) # transfer model to device ``` Get an audio file ready by running the command shown below in your terminal. This will convert the audio to 16000 Hz and monochannel. ``` ffmpeg -i sample_audio.wav -ac 1 -ar 16000 sample_audio_infer_ready.wav ``` ### Inference ``` wavpath = 'sample.wav' wav = pydub.AudioSegment.from_file(wavpath).set_frame_rate(16000).set_channels(1) sarray = wav.get_array_of_samples() fp_arr = np.array(sarray).T.astype(np.float64) fp_arr = fp_arr.reshape((1,-1)) feature = torch.from_numpy(fp_arr).float().to(device='cuda') length=torch.tensor([fp_arr.shape[1]]).to(device='cuda') spectrograms, spec_masks, encoded, encoded_len = model(input_signal=feature,input_signal_length=length) ```