smollm2-360m-physics-gguf **Author**: [Akhil Vallala](https://www.linkedin.com/in/akhil-fau) **Base Model**: [`akhilfau/fine-tuned-smolLM2-360M-with-on-combined_Instruction_dataset`](https://huggingface.co/akhilfau/fine-tuned-smolLM2-360M-with-on-combined_Instruction_dataset) **Architecture**: LLaMA (SmolLM2) **Parameter count**: 362M **Format**: GGUF (Q4_K_M, Q8_0, FP16) **License**: Apache 2.0 **Model Type**: Instruction-tuned Small Language Model (SLM) **Use Case**: Solving physics word problems on mobile devices Model Overview This GGUF model is a quantized version of the **Tiny-Physics** model, based on SmolLM2-360M and fine-tuned for **physics word problem solving** using both real and synthetic datasets. It is designed to deliver accurate, low-latency performance on **mobile and edge devices**. Datasets Used - ๐Ÿ“˜ **camel-ai/physics**: Publicly available dataset with 20,000+ physics QA pairs - ๐Ÿ“˜ **Seed dataset**: Extracted from *1000 Solved Problems in Classical Physics* - ๐Ÿง  **Synthetic dataset**: 6,279 rigorously validated question-answer pairs generated using a GPT-4o-based multi-agent system These datasets were formatted for instruction tuning using structured promptโ€“response pairs. Training Details - **Model**: SmolLM2-360M - **Fine-tuning**: Instruction fine-tuning with LoRA (Low-Rank Adaptation) - **Libraries**: Hugging Face Transformers, TRL, Lighteval - **Training Epochs**: 3 (best accuracy observed at 3โ€“5 epochs) - **Fine-tuning Objective**: Maximize performance on MMLU College Physics - **Best Model Accuracy**: `24.51%` on MMLU College Physics Evaluation **Evaluated with**: [Lighteval](https://github.com/huggingface/lighteval) **Benchmark**: [MMLU College Physics](https://huggingface.co/datasets/hendrycks_test) **Performance**: | Dataset | Accuracy (SmolLM2-360M-Instruct) | |-----------------------------|----------------------------------| | MMLU: College Physics | 24.51% | | Instruction-Tuned camel-ai | 25.49% | | Combined Instruction Dataset| 24.51% | GGUF Quantization Model is provided in multiple quantization formats: | Format | Size | Accuracy Retention | Inference Speed | RAM Usage | Target Use | |----------|--------|--------------------|------------------|---------------|------------------------------------| | `Q4_K_M` | ~271MB | ~95โ€“97% | Fast | ~600โ€“800MB | Ideal for mid-range mobile devices | | `Q8_0` | ~386MB | ~99% | Medium | ~1โ€“1.5GB | Best for higher-end devices | | `FP16` | ~800MB | 100% | Slow | ~2GB+ | Reference use only | How to Use ```bash # Using llama.cpp ./main -m smollm2-360m-physics-gguf.Q4_K_M.gguf -p "What is the acceleration of a 2kg mass falling from 5 meters?" ``` Or via `llama-cpp-python`: ```python from llama_cpp import Llama llm = Llama(model_path="smollm2-360m-physics-gguf.Q4_K_M.gguf") output = llm("What is the potential energy of a 3kg object at 10 meters?") ``` Intended Use - ๐Ÿ“š **Physics tutoring apps** - ๐Ÿ“ถ **Offline mobile inference** - ๐Ÿง‘โ€๐Ÿซ **Educational tools for conceptual reasoning** - ๐Ÿ”‹ **Low-power deployment scenarios** Limitations - Not trained on multiple-choice formatted data (MCQ output mismatch possible) - Topic imbalance in datasets may affect generalization - Not suitable for non-physics or open-domain tasks Carbon Footprint Training and fine-tuning consumed approx. **2.64 kg COโ‚‚e**, equivalent to a ~7-mile car ride. This was achieved using local GPU resources (RTX A5500) and energy-efficient batch tuning with LoRA. Citation ```bibtex @misc{vallala2025tinyphysics, title={Tiny-Physics: A Compact Large Language Model for Physics Word Problems on Mobile Devices}, author={Akhil Vallala}, year={2025}, howpublished={\url{https://huggingface.co/akhilfau/smollm2-360m-physics-gguf}}, } ```