---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7600
- loss:AttributeTripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
- source_sentence: Harperaudio
sentences:
- 'Pub. Date: May 2007'
- ': Atheneum Books'
- publication_date
- publisher
- source_sentence: Josh McDowell
sentences:
- author
- Peter B. Rosenberger
- isbn_13
- '9781616877163'
- source_sentence: ': 9780316067348'
sentences:
- 'Publisher: Barnes & Noble'
- publisher
- '9780785134350'
- isbn_13
- source_sentence: '9780425235676'
sentences:
- '9780312939434'
- isbn_13
- author
- Jim Butcher
- source_sentence: ': Vintage Books USA'
sentences:
- 'Publisher: Knopf Doubleday Publishing Group'
- publication_date
- 'Pub. Date: October 26, 2010'
- publisher
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- silhouette_cosine
- silhouette_euclidean
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- task:
type: silhouette
name: Silhouette
dataset:
name: Unknown
type: unknown
metrics:
- type: silhouette_cosine
value: 0.9663600325584412
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.843291163444519
name: Silhouette Euclidean
- type: silhouette_cosine
value: 0.9647400975227356
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.8390628099441528
name: Silhouette Euclidean
---
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-book-reference_3_to_verify_7-fold-10")
# Run inference
sentences = [
': Vintage Books USA',
'Publisher: Knopf Doubleday Publishing Group',
'Pub. Date: October 26, 2010',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.9664** |
| silhouette_euclidean | 0.8433 |
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.9647** |
| silhouette_euclidean | 0.8391 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 7,600 training samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details |
New Moon
| The Best Kind of Different
| July 21, 2005
| title
| publication_date
|
| : January 2009
| Pub. Date: September 2002
| : 9780316049009
| publication_date
| isbn_13
|
| Martha Nesbit
| Kate DiCamillo
| Pub. Date: February 1999
| author
| publication_date
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 845 evaluation samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 845 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | Nancy Schoenberger
| Catherine Anderson
| : Berkley
| author
| publisher
|
| Publisher: Bethany House Publishers
| Knopf Doubleday Publishing Group
| DK Publishing
| publisher
| author
|
| Lise Friedman
| Lisa Gardner
| : Benbella Books
| author
| publisher
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
#### All Hyperparameters