---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10079
- loss:AttributeTripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
- source_sentence: 'The Beginnings: Word & Spirit in Conversion'
sentences:
- '9780312942328'
- isbn_13
- title
- 'I Dare You: Embrace Life with Passion'
- source_sentence: Continuum International
sentences:
- '1999'
- publisher
- publication_date
- 'Publisher: Charlesbridge Pub Inc'
- source_sentence: 'Pub. Date: December 2009'
sentences:
- 20/09/2007
- '9781616790905'
- publication_date
- isbn_13
- source_sentence: '9781600785283'
sentences:
- isbn_13
- 'Pub. Date: February 2010'
- '9781400068579'
- publication_date
- source_sentence: 'Publisher: Penguin Group (USA)'
sentences:
- publisher
- E. B. White
- author
- Harvest House Publishers
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- silhouette_cosine
- silhouette_euclidean
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9758928418159485
name: Cosine Accuracy
- type: cosine_accuracy
value: 0.972690761089325
name: Cosine Accuracy
- task:
type: silhouette
name: Silhouette
dataset:
name: Unknown
type: unknown
metrics:
- type: silhouette_cosine
value: 0.726933479309082
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.5876889228820801
name: Silhouette Euclidean
- type: silhouette_cosine
value: 0.7395883202552795
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.5981691479682922
name: Silhouette Euclidean
---
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-book-reference_4_to_verify_6-fold-5")
# Run inference
sentences = [
'Publisher: Penguin Group (USA)',
'Harvest House Publishers',
'E. B. White',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9759** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.7269** |
| silhouette_euclidean | 0.5877 |
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9727** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.7396** |
| silhouette_euclidean | 0.5982 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 10,079 training samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details |
978-0453008754
| 9781416579021
| Peter Pan (Barnes & Noble Classics Series)
| isbn_13
| title
|
| 2008
| Pub. Date: May 2009
| 978-0880800174
| publication_date
| isbn_13
|
| Summersdale Publishers
| Publisher: Random House Publishing Group
| 9781607060765
| publisher
| isbn_13
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,120 evaluation samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | Novel to Film: An Introduction to the Theory of Adaptation
| Roughing It (Signet Classics)
| Houghton Mifflin; 1 edition (November 2002)
| title
| publication_date
|
| The Making of America: The Substance and Meaning of the Constitution
| I Am...: Biblical Women Tell Their Own Stories
| Benjamin Franklin
| title
| author
|
| 978-0399523304
| 9781592578368
| Dean Koontz
| isbn_13
| author
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
#### All Hyperparameters