---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10089
- loss:AttributeTripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
- source_sentence: '9780899663975'
sentences:
- HarperCollins Publishers Inc
- publisher
- isbn_13
- '9780375703768'
- source_sentence: Dorling Kindersley Publishing, Incorporated
sentences:
- 09/01/1999
- publisher
- publication_date
- Razorbill
- source_sentence: Soho Pr Inc
sentences:
- Kodansha International Ltd
- Nina Malkin
- publisher
- author
- source_sentence: Kathy Reichs
sentences:
- author
- '9781598877625'
- Estelle Rankin
- isbn_13
- source_sentence: Kevin D. Mitnick
sentences:
- author
- '9781594133725'
- isbn_13
- Helen E. Johnson
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- silhouette_cosine
- silhouette_euclidean
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- task:
type: silhouette
name: Silhouette
dataset:
name: Unknown
type: unknown
metrics:
- type: silhouette_cosine
value: 0.9493929743766785
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.8277457356452942
name: Silhouette Euclidean
- type: silhouette_cosine
value: 0.9458191990852356
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.8220656514167786
name: Silhouette Euclidean
---
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-book-reference_4_to_verify_6-fold-6")
# Run inference
sentences = [
'Kevin D. Mitnick',
'Helen E. Johnson',
'9781594133725',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.9494** |
| silhouette_euclidean | 0.8277 |
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:--------|
| **cosine_accuracy** | **1.0** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.9458** |
| silhouette_euclidean | 0.8221 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 10,089 training samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details |
01 March 2011
| 02/09/2010
| BBC Active
| publication_date
| publisher
|
| Watership Down
| The Liberal Way of War
| 22/06/2010
| title
| publication_date
|
| Colleen Coble
| Neil Gaiman
| Dolores Huerta
| author
| title
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,121 evaluation samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | Broadway Books
| Harpercollins
| 9780091884635
| publisher
| isbn_13
|
| Mary Pope Osborne
| etc.
| 9780571045785
| author
| isbn_13
|
| 101 Cheap Eats: Tried-and-tested Recipes - "Good Food"
| Hunters Of Dune
| Hachette Audio
| title
| publisher
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
#### All Hyperparameters