---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:17670
- loss:AttributeTripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
- source_sentence: There Is Nothing Wrong With You
sentences:
- title
- isbn_13
- '9781591603580'
- The Rough Guide to The Future
- source_sentence: April 27, 2004
sentences:
- publisher
- Berkley (April 4, 2006)
- 'Pub. Date: May 2009'
- publication_date
- source_sentence: 'Death Note: v. 4'
sentences:
- publisher
- title
- The Black Library
- The Magician
- source_sentence: Rodale Books; Upd Exp edition (October 6, 2009)
sentences:
- FOCAL
- publication_date
- publisher
- Sourcebooks, Inc. (October 2009)
- source_sentence: May 01, 2005
sentences:
- publication_date
- isbn_13
- 04/02/2010
- '9780515148152'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- silhouette_cosine
- silhouette_euclidean
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9831975698471069
name: Cosine Accuracy
- type: cosine_accuracy
value: 0.980293333530426
name: Cosine Accuracy
- task:
type: silhouette
name: Silhouette
dataset:
name: Unknown
type: unknown
metrics:
- type: silhouette_cosine
value: 0.8029668927192688
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.6663942933082581
name: Silhouette Euclidean
- type: silhouette_cosine
value: 0.7841435670852661
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.6505300998687744
name: Silhouette Euclidean
---
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-book-reference_7_to_verify_3-fold-10")
# Run inference
sentences = [
'May 01, 2005',
'04/02/2010',
'9780515148152',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9832** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:----------|
| **silhouette_cosine** | **0.803** |
| silhouette_euclidean | 0.6664 |
#### Triplet
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9803** |
#### Silhouette
* Evaluated with veriscrape.training.SilhouetteEvaluator
| Metric | Value |
|:----------------------|:-----------|
| **silhouette_cosine** | **0.7841** |
| silhouette_euclidean | 0.6505 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 17,670 training samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details |
Barbara Willard
| J.R.R. Tolkien
| 1999
| author
| publication_date
|
| Pub. Date: January 2005
| Pub. Date: June 2010
| 9780515148152
| publication_date
| isbn_13
|
| : Harlequin Books
| Little, Brown and Company; 1ST edition (June 29, 2009)
| The Untamed Bride (Black Cobra Series #1)
| publisher
| title
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,964 evaluation samples
* Columns: anchor
, positive
, negative
, pos_attr_name
, and neg_attr_name
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative | pos_attr_name | neg_attr_name |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | Neil Gaiman
| Erin Hunter
| Alice's Adventures in Wonderland and Through the Looking Glass (Penguin Classics)
| author
| title
|
| : Avon Books
| Listening Library
| : 9780758211880
| publisher
| isbn_13
|
| June 29, 2010
| Pub. Date: May 2008
| Simon & Schuster (June 29, 2004)
| publication_date
| publisher
|
* Loss: veriscrape.training.AttributeTripletLoss
with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
#### All Hyperparameters