Text Generation
Transformers
PyTorch
Safetensors
English
olmoe
conversational
Inference Endpoints
vwxyzjn commited on
Commit
a2b0201
·
verified ·
1 Parent(s): abce207

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -199
README.md CHANGED
@@ -1,215 +1,171 @@
1
  ---
2
- language: en
3
- model-index:
4
- - name: allenai/open_instruct_dev
5
- results:
6
- - task:
7
- type: preference_evaluation
8
- dataset:
9
- name: reward-bench
10
- type: allenai/reward-bench
11
- metrics:
12
- - type: accuracy
13
- value: 1.0
14
- - type: accuracy
15
- value: 1.0
16
- - type: accuracy
17
- value: 1.0
18
- - type: accuracy
19
- value: 1.0
20
  ---
21
 
22
- # Model Card for allenai/open_instruct_dev
23
 
24
- <!-- Provide a quick summary of what the model is/does. -->
25
 
 
26
 
27
 
28
- ## Model Details
29
 
30
- ### Model Description
 
 
31
 
32
- <!-- Provide a longer summary of what this model is. -->
 
 
33
 
34
 
 
 
 
 
 
 
 
35
 
36
- - **Developed by:** [More Information Needed]
37
- - **Funded by [optional]:** [More Information Needed]
38
- - **Shared by [optional]:** [More Information Needed]
39
- - **Model type:** [More Information Needed]
40
- - **Language(s) (NLP):** en
41
- - **License:** [More Information Needed]
42
- - **Finetuned from model [optional]:** [More Information Needed]
43
 
44
- ### Model Sources [optional]
45
 
46
- <!-- Provide the basic links for the model. -->
 
 
 
47
 
48
- - **Repository:** [More Information Needed]
49
- - **Paper [optional]:** [More Information Needed]
50
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- ## Uses
53
-
54
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
55
-
56
- ### Direct Use
57
-
58
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
59
-
60
- [More Information Needed]
61
-
62
- ### Downstream Use [optional]
63
-
64
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
65
-
66
- [More Information Needed]
67
-
68
- ### Out-of-Scope Use
69
-
70
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
71
-
72
- [More Information Needed]
73
-
74
- ## Bias, Risks, and Limitations
75
-
76
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
77
-
78
- [More Information Needed]
79
-
80
- ### Recommendations
81
-
82
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
83
-
84
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
85
-
86
- ## How to Get Started with the Model
87
-
88
- Use the code below to get started with the model.
89
-
90
- [More Information Needed]
91
-
92
- ## Training Details
93
-
94
- ### Training Data
95
-
96
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
97
-
98
- [More Information Needed]
99
-
100
- ### Training Procedure
101
-
102
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
103
-
104
- #### Preprocessing [optional]
105
-
106
- [More Information Needed]
107
-
108
-
109
- #### Training Hyperparameters
110
-
111
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
112
-
113
- #### Speeds, Sizes, Times [optional]
114
-
115
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
116
-
117
- [More Information Needed]
118
-
119
- ## Evaluation
120
-
121
- <!-- This section describes the evaluation protocols and provides the results. -->
122
-
123
- ### Testing Data, Factors & Metrics
124
-
125
- #### Testing Data
126
-
127
- <!-- This should link to a Dataset Card if possible. -->
128
-
129
- [More Information Needed]
130
-
131
- #### Factors
132
-
133
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
134
-
135
- [More Information Needed]
136
-
137
- #### Metrics
138
-
139
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
140
-
141
- [More Information Needed]
142
-
143
- ### Results
144
-
145
- [More Information Needed]
146
-
147
- #### Summary
148
-
149
-
150
-
151
- ## Model Examination [optional]
152
-
153
- <!-- Relevant interpretability work for the model goes here -->
154
-
155
- [More Information Needed]
156
-
157
- ## Environmental Impact
158
-
159
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
160
-
161
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
162
-
163
- - **Hardware Type:** [More Information Needed]
164
- - **Hours used:** [More Information Needed]
165
- - **Cloud Provider:** [More Information Needed]
166
- - **Compute Region:** [More Information Needed]
167
- - **Carbon Emitted:** [More Information Needed]
168
-
169
- ## Technical Specifications [optional]
170
-
171
- ### Model Architecture and Objective
172
-
173
- [More Information Needed]
174
-
175
- ### Compute Infrastructure
176
-
177
- [More Information Needed]
178
-
179
- #### Hardware
180
-
181
- [More Information Needed]
182
-
183
- #### Software
184
-
185
- [More Information Needed]
186
-
187
- ## Citation [optional]
188
-
189
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
190
-
191
- **BibTeX:**
192
-
193
- [More Information Needed]
194
-
195
- **APA:**
196
-
197
- [More Information Needed]
198
-
199
- ## Glossary [optional]
200
-
201
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
202
-
203
- [More Information Needed]
204
-
205
- ## More Information [optional]
206
-
207
- [More Information Needed]
208
-
209
- ## Model Card Authors [optional]
210
-
211
- [More Information Needed]
212
-
213
- ## Model Card Contact
214
-
215
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ base_model:
7
+ - allenai/OLMoE-1B-7B-0125-SFT
8
+ library_name: transformers
9
+ datasets:
10
+ - allenai/olmoe-0125-1b-7b-preference-mix
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
+ <img alt="OLMo Logo" src="https://huggingface.co/allenai/OLMoE-1B-7B-0125/resolve/main/olmoe-logo.png" width="242px">
14
 
 
15
 
16
+ # OLMoE-1B-7B-0125-DPO
17
 
18
 
19
+ ## Release Documentation
20
 
21
+ OLMoE-1B-7B-0125-DPO January 2025 is post-trained variant of the [OLMoE-1B-7B January 2025](https://huggingface.co/allenai/OLMoE-1B-7B-0125) model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tülu 3 dataset](allenai/tulu-3-sft-olmo-2-mixture) and further DPO training on [this dataset](https://huggingface.co/datasets/allenai/olmo-2-1124-13b-preference-mix), and finally RLVR training using [this data](https://huggingface.co/datasets/allenai/RLVR-GSM).
22
+ Tülu 3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
23
+ Check out the [OLMoE paper](https://arxiv.org/abs/2409.02060) or [Tülu 3 paper](https://arxiv.org/abs/2411.15124) for more details!
24
 
25
+ OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
26
+ These models are trained on the Dolma dataset. We are releasing all code, checkpoints, logs (coming soon), and associated training details.
27
+ The core models released in this batch include the following:
28
 
29
 
30
+ | **Stage** | **OLMo 2 7B** |
31
+ |----------------------|----------------------------------------------------------------------------------------------------------|
32
+ | **Base Model** | [allenai/OLMoE-1B-7B-0125](https://huggingface.co/allenai/OLMoE-1B-7B-0125) |
33
+ | **SFT** | [allenai/OLMoE-1B-7B-0125-SFT](https://huggingface.co/allenai/OLMoE-1B-7B-0125-SFT) |
34
+ | **DPO** | [allenai/OLMoE-1B-7B-0125-DPO](https://huggingface.co/allenai/OLMoE-1B-7B-0125-DPO) |
35
+ | **Final Models (RLVR)** | [allenai/OLMoE-1B-7B-0125-Instruct](https://huggingface.co/allenai/OLMoE-1B-7B-0125-Instruct) |
36
+ | **Reward Model (RM)**| [allenai/OLMoE-1B-7B-0125-RM](https://huggingface.co/allenai/OLMoE-1B-7B-0125-RM) |
37
 
 
 
 
 
 
 
 
38
 
39
+ ## Model description
40
 
41
+ - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
42
+ - **Language(s) (NLP):** Primarily English
43
+ - **License:** Apache 2.0
44
+ - **Finetuned from model:** allenai/OLMoE-1B-7B-0125-DPO
45
 
46
+ ### Model Sources
47
+
48
+ - **Project Page:** https://allenai.org/olmo
49
+ - **Repositories:**
50
+ - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
51
+ - Evaluation code: https://github.com/allenai/olmes
52
+ - Further fine-tuning code: https://github.com/allenai/open-instruct
53
+ - **Paper:** https://arxiv.org/abs/2409.02060
54
+ - **Demo:** https://playground.allenai.org/
55
+
56
+ ## Installation
57
+
58
+ OLMo 2 will be supported in the next version of Transformers, and you need to install it from the main branch using:
59
+ ```bash
60
+ pip install --upgrade git+https://github.com/huggingface/transformers.git
61
+ ```
62
+
63
+ ## Using the model
64
+
65
+ ### Loading with HuggingFace
66
+
67
+ To load the model with HuggingFace, use the following snippet:
68
+ ```
69
+ from transformers import AutoModelForCausalLM
70
+
71
+ olmo_model = AutoModelForCausalLM.from_pretrained("OLMoE-1B-7B-0125-DPO")
72
+ ```
73
+
74
+ ### Chat template
75
+
76
+ The chat template for our models is formatted as:
77
+ ```
78
+ <|endoftext|><|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
79
+ ```
80
+ Or with new lines expanded:
81
+ ```
82
+ <|endoftext|><|user|>
83
+ How are you doing?
84
+ <|assistant|>
85
+ I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
86
+ ```
87
+ It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
88
+
89
+ ### System prompt
90
+
91
+ In Ai2 demos, we use this system prompt by default:
92
+ ```
93
+ You are OLMo 2, a helpful and harmless AI Assistant built by the Allen Institute for AI.
94
+ ```
95
+ The model has not been trained with a specific system prompt in mind.
96
+
97
+ ### Bias, Risks, and Limitations
98
+
99
+ The OLMo-2 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
100
+ See the Falcon 180B model card for an example of this.
101
+
102
+
103
+ ## Performance
104
+
105
+ | Benchmark (eval) | OLMoE-1B-7B-0125-Instruct | OLMoE-1B-7B-0924-Instruct | OLMoE-1B-7B-0125-DPO | OLMoE-1B-7B-0125-SFT | OLMoE-1B-7B-0924-SFT |
106
+ |--------------------------------|---------------------------|--------------------------|----------------------|---------------------|---------------------|
107
+ | **Avg.** | **45.62** | 38.44 | 45.05 | 41.76 | 37.05 |
108
+ | **MMLU (CoT)** | 55.08 | 54.57 | 54.93 | **55.26** | 54.32 |
109
+ | **PopQA** | 19.75 | 20.56 | 19.65 | 20.12 | **21.01** |
110
+ | **TruthfulQA** | **50.56** | 49.14 | 49.99 | 45.48 | 44.66 |
111
+ | **BigBenchHard (CoT)** | **38.61** | 36.78 | 37.37 | 37.31 | 36.55 |
112
+ | **DROP** | 47.87 | 34.48 | 48.38 | **48.57** | 34.71 |
113
+ | **MATH (Flex)** | **21.41** | 8.16 | 20.36 | 21.38 | 8.15 |
114
+ | **GSM8K** | **72.40** | 47.38 | 64.59 | 55.72 | 42.46 |
115
+ | **HumanEval** | 62.30 | 63.04 | 61.92 | 62.58 | **63.72** |
116
+ | **HumanEval+** | 54.37 | **58.93** | 57.61 | 55.67 | 57.40 |
117
+ | **IFEval** | **66.36** | 45.29 | 65.62 | 56.56 | 41.22 |
118
+ | **AlpacaEval** | 17.99 | 7.54 | **19.50** | 5.83 | 6.38 |
119
+ | **Safety (average)** | 90.40 | 51.40 | 91.40 | **94.50** | 65.80 |
120
+
121
+ ## License and use
122
+
123
+ OLMoE is licensed under the Apache 2.0 license.
124
+ OLMoE is intended for research and educational use.
125
+ For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
126
+ This model has been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms: [Gemma Terms of Use](https://ai.google.dev/gemma/terms).
127
+
128
+ ## Citation
129
+
130
+ ```bibtex
131
+ @misc{muennighoff2024olmoeopenmixtureofexpertslanguage,
132
+ title={OLMoE: Open Mixture-of-Experts Language Models},
133
+ author={Niklas Muennighoff and Luca Soldaini and Dirk Groeneveld and Kyle Lo and Jacob Morrison and Sewon Min and Weijia Shi and Pete Walsh and Oyvind Tafjord and Nathan Lambert and Yuling Gu and Shane Arora and Akshita Bhagia and Dustin Schwenk and David Wadden and Alexander Wettig and Binyuan Hui and Tim Dettmers and Douwe Kiela and Ali Farhadi and Noah A. Smith and Pang Wei Koh and Amanpreet Singh and Hannaneh Hajishirzi},
134
+ year={2024},
135
+ eprint={2409.02060},
136
+ archivePrefix={arXiv},
137
+ primaryClass={cs.CL},
138
+ url={https://arxiv.org/abs/2409.02060},
139
+ }
140
+ @article{lambert2024tulu3,
141
+ title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
142
+ author = {
143
+ Nathan Lambert and
144
+ Jacob Morrison and
145
+ Valentina Pyatkin and
146
+ Shengyi Huang and
147
+ Hamish Ivison and
148
+ Faeze Brahman and
149
+ Lester James V. Miranda and
150
+ Alisa Liu and
151
+ Nouha Dziri and
152
+ Shane Lyu and
153
+ Yuling Gu and
154
+ Saumya Malik and
155
+ Victoria Graf and
156
+ Jena D. Hwang and
157
+ Jiangjiang Yang and
158
+ Ronan Le Bras and
159
+ Oyvind Tafjord and
160
+ Chris Wilhelm and
161
+ Luca Soldaini and
162
+ Noah A. Smith and
163
+ Yizhong Wang and
164
+ Pradeep Dasigi and
165
+ Hannaneh Hajishirzi
166
+ },
167
+ year = {2024},
168
+ email = {[email protected]}
169
+ }
170
+ ```
171