--- library_name: transformers license: apache-2.0 base_model: EleutherAI/gpt-j-6b tags: - generated_from_trainer datasets: - ToastyPigeon/disco-chat model-index: - name: ckpts results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: EleutherAI/gpt-j-6b load_in_8bit: false load_in_4bit: false #plugins: # - axolotl.integrations.liger.LigerPlugin #liger_rope: true #liger_rms_norm: true #liger_glu_activation: true #liger_fused_linear_cross_entropy: true #unsloth_lora_mlp: true #unsloth_lora_qkv: true #unsloth_lora_o: true strict: false datasets: - path: ToastyPigeon/disco-chat type: completion field: text split: train dataset_prepared_path: last_run_prepared #val_set_size: 0.02 output_dir: ./ckpts sequence_len: 2048 sample_packing: false pad_to_sequence_len: true #wandb_project: teleut-7b-rp #wandb_entity: #wandb_watch: #wandb_name: #wandb_log_model: checkpoint # mlflow configuration if you're using it #mlflow_tracking_uri: https://public-tracking.mlflow-e00zzfjq11ky6jcgtv.backbone-e00bgn6e63256prmhq.msp.eu-north1.nebius.cloud #mlflow_experiment_name: gpt-j-6b-disco-chat #mlflow_run_name: v1 #hf_mlflow_log_artifacts: true gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 2 optimizer: paged_ademamix_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true #deepspeed: deepspeed_configs/zero3_bf16.json warmup_steps: 25 #evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: weight_decay: 0.01 special_tokens: pad_token: "<|endoftext|>" ```

# ckpts This model is a fine-tuned version of [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) on the ToastyPigeon/disco-chat dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0