File size: 8,238 Bytes
714c46d
 
661fa9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714c46d
 
 
 
 
 
 
 
 
 
 
 
 
ca69d5b
714c46d
 
 
 
 
 
 
 
 
 
 
 
dd99649
714c46d
 
 
 
 
 
 
 
 
 
dd99649
714c46d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd99649
714c46d
 
 
 
 
 
 
 
 
 
 
 
 
dd99649
714c46d
 
 
 
 
 
 
dd99649
714c46d
 
dd99649
714c46d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661fa9d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
license: apache-2.0
model-index:
- name: WizardLM-2-8x22B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 52.72
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 48.58
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 22.28
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 17.56
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.54
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 39.96
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/WizardLM-2-8x22B
      name: Open LLM Leaderboard
---



<p style="font-size:20px;" align="center">
🏠 <a href="https://wizardlm.github.io/WizardLM2" target="_blank">WizardLM-2 Release Blog</a> </p>
<p align="center">
πŸ€— <a href="https://huggingface.co/collections/microsoft/wizardlm-2-661d403f71e6c8257dbd598a" target="_blank">HF Repo</a>  β€’πŸ± <a href="https://github.com/victorsungo/WizardLM/tree/main/WizardLM-2" target="_blank">Github Repo</a>  β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a>  β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>   β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>  <br>
</p>
<p align="center">
    πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
</p>

## See [here](https://huggingface.co/lucyknada/microsoft_WizardLM-2-7B) for the WizardLM-2-7B re-upload.

## News πŸ”₯πŸ”₯πŸ”₯ [2024/04/15]

We introduce and opensource WizardLM-2, our next generation state-of-the-art large language models, 
which have improved performance on complex chat, multilingual, reasoning and agent. 
New family includes three cutting-edge models: WizardLM-2 8x22B, WizardLM-2 70B, and WizardLM-2 7B.

- WizardLM-2 8x22B is our most advanced model, demonstrates highly competitive performance compared to those leading proprietary works 
and consistently outperforms all the existing state-of-the-art opensource models.
- WizardLM-2 70B reaches top-tier reasoning capabilities and is the first choice in the same size. 
- WizardLM-2 7B is the fastest and achieves comparable performance with existing 10x larger opensource leading models.

For more  details of WizardLM-2 please read our [release blog post](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/) and  upcoming paper.


## Model Details

* **Model name**: WizardLM-2 8x22B
* **Developed by**: WizardLM@Microsoft AI
* **Model type**: Mixture of Experts (MoE)
* **Base model**: [mistral-community/Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1)
* **Parameters**: 141B
* **Language(s)**: Multilingual
* **Blog**: [Introducing WizardLM-2](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/)
* **Repository**: [https://github.com/nlpxucan/WizardLM](https://github.com/nlpxucan/WizardLM)
* **Paper**: WizardLM-2 (Upcoming)
* **License**: Apache2.0


## Model Capacities


**MT-Bench**

We also adopt the automatic MT-Bench evaluation framework based on GPT-4 proposed by lmsys to assess the performance of models. 
The WizardLM-2 8x22B even demonstrates highly competitive performance compared to the most advanced proprietary models. 
Meanwhile, WizardLM-2 7B and WizardLM-2 70B are all the top-performing models among the other leading baselines at 7B to 70B model scales.

<p align="center" width="100%">
<a ><img src="https://web.archive.org/web/20240415175608im_/https://wizardlm.github.io/WizardLM2/static/images/mtbench.png" alt="MTBench" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>


**Human Preferences Evaluation**

We carefully collected a complex and challenging set consisting of real-world instructions, which includes main requirements of humanity, such as writing, coding, math, reasoning, agent, and multilingual. 
We report the win:loss rate without tie:

- WizardLM-2 8x22B is just slightly falling behind GPT-4-1106-preview, and significantly stronger than Command R Plus and GPT4-0314.
- WizardLM-2 70B is better than GPT4-0613, Mistral-Large, and Qwen1.5-72B-Chat.
- WizardLM-2 7B is comparable with Qwen1.5-32B-Chat, and surpasses Qwen1.5-14B-Chat and Starling-LM-7B-beta.

<p align="center" width="100%">
<a ><img src="https://web.archive.org/web/20240415163303im_/https://wizardlm.github.io/WizardLM2/static/images/winall.png" alt="Win" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>





## Method Overview
We built a **fully AI powered synthetic training system** to train WizardLM-2 models, please refer to our [blog](https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/) for more details of this system.

<p align="center" width="100%">
<a ><img src="https://web.archive.org/web/20240415163303im_/https://wizardlm.github.io/WizardLM2/static/images/exp_1.png" alt="Method" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>





## Usage

❗<b>Note for model system prompts usage:</b>


<b>WizardLM-2</b>  adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following:

```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, 
detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>
USER: Who are you? ASSISTANT: I am WizardLM.</s>......
```

<b> Inference WizardLM-2 Demo Script</b>

We provide a WizardLM-2 inference demo [code](https://github.com/nlpxucan/WizardLM/tree/main/demo) on our github.





# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alpindale__WizardLM-2-8x22B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |32.61|
|IFEval (0-Shot)    |52.72|
|BBH (3-Shot)       |48.58|
|MATH Lvl 5 (4-Shot)|22.28|
|GPQA (0-shot)      |17.56|
|MuSR (0-shot)      |14.54|
|MMLU-PRO (5-shot)  |39.96|